How Does Learning Analytics Contribute to Prevent Students’ Dropout in Higher Education: A Systematic Literature Review

Date

2021-11-04

Embargo

Advisor

Coadvisor

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI - Multidisciplinary Digital Publishing Institute
Language
English

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

Retention and dropout of higher education students is a subject that must be analysed carefully. Learning analytics can be used to help prevent failure cases. The purpose of this paper is to analyse the scientific production in this area in higher education in journals indexed in Clarivate Analytics’ Web of Science and Elsevier’s Scopus. We use a bibliometric and systematic study to obtain deep knowledge of the referred scientific production. The information gathered allows us to perceive where, how, and in what ways learning analytics has been used in the latest years. By analysing studies performed all over the world, we identify what kinds of data and techniques are used to approach the subject. We propose a feature classification into several categories and subcategories, regarding student and external features. Student features can be seen as personal or academic data, while external factors include information about the university, environment, and support offered to the students. To approach the problems, authors successfully use data mining applied to the identified educational data. We also identify some other concerns, such as privacy issues, that need to be considered in the studies.

Keywords

Learning analytics, Educational data mining, Higher education, Dropout, Retention

Document Type

Journal article

Dataset

Citation

Oliveira, C. F., Sobral, S. R., Ferreira, M. J., & Moreira, F. (2021). How Does Learning Analytics Contribute to Prevent Students’ Dropout in Higher Education: A Systematic Literature Review. Big Data and Cognitive Computing, 2021, 5(4), 64. https://doi.org/10.3390/bdcc5040064. Disponível no Repositório UPT, http://hdl.handle.net/11328/3796

TID

Designation

Access Type

Open Access

Sponsorship

Description