How Does Learning Analytics Contribute to Prevent Students’ Dropout in Higher Education: A Systematic Literature Review

dc.contributor.authorOliveira, Catarina Félix de
dc.contributor.authorSobral, Sónia Rolland
dc.contributor.authorFerreira, Maria João
dc.contributor.authorMoreira, Fernando
dc.date.accessioned2021-11-05T15:42:00Z
dc.date.available2021-11-05T15:42:00Z
dc.date.issued2021-11-04
dc.description.abstractRetention and dropout of higher education students is a subject that must be analysed carefully. Learning analytics can be used to help prevent failure cases. The purpose of this paper is to analyse the scientific production in this area in higher education in journals indexed in Clarivate Analytics’ Web of Science and Elsevier’s Scopus. We use a bibliometric and systematic study to obtain deep knowledge of the referred scientific production. The information gathered allows us to perceive where, how, and in what ways learning analytics has been used in the latest years. By analysing studies performed all over the world, we identify what kinds of data and techniques are used to approach the subject. We propose a feature classification into several categories and subcategories, regarding student and external features. Student features can be seen as personal or academic data, while external factors include information about the university, environment, and support offered to the students. To approach the problems, authors successfully use data mining applied to the identified educational data. We also identify some other concerns, such as privacy issues, that need to be considered in the studies.pt_PT
dc.identifier.citationOliveira, C. F., Sobral, S. R., Ferreira, M. J., & Moreira, F. (2021). How Does Learning Analytics Contribute to Prevent Students’ Dropout in Higher Education: A Systematic Literature Review. Big Data and Cognitive Computing, 2021, 5(4), 64. https://doi.org/10.3390/bdcc5040064. Disponível no Repositório UPT, http://hdl.handle.net/11328/3796pt_PT
dc.identifier.doihttps://doi.org/10.3390/bdcc5040064pt_PT
dc.identifier.issn2504-2289
dc.identifier.urihttp://hdl.handle.net/11328/3796
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPI - Multidisciplinary Digital Publishing Institutept_PT
dc.relation.ispartofseries;4
dc.rightsopen accesspt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectLearning analyticspt_PT
dc.subjectEducational data miningpt_PT
dc.subjectHigher educationpt_PT
dc.subjectDropoutpt_PT
dc.subjectRetentionpt_PT
dc.titleHow Does Learning Analytics Contribute to Prevent Students’ Dropout in Higher Education: A Systematic Literature Reviewpt_PT
dc.typejournal articlept_PT
degois.publication.firstPage64pt_PT
degois.publication.titleBig Data and Cognitive Computingpt_PT
degois.publication.volume5pt_PT
dspace.entity.typePublicationen
person.affiliation.nameREMIT – Research on Economics, Management and Information Technologies
person.affiliation.nameREMIT – Research on Economics, Management and Information Technologies
person.affiliation.nameUniversidade Portucalense
person.familyNameSobral
person.familyNameFerreira
person.familyNameMoreira
person.givenNameSónia Rolland
person.givenNameMaria João
person.givenNameFernando
person.identifier.ciencia-idED15-C9EC-5996
person.identifier.ciencia-id5C16-639B-5E48
person.identifier.ciencia-id7B1C-3A29-9861
person.identifier.orcid0000-0002-5041-3597
person.identifier.orcid0000-0003-4274-8845
person.identifier.orcid0000-0002-0816-1445
person.identifier.ridG-2227-2014
person.identifier.ridO-3023-2015
person.identifier.ridP-9673-2016
person.identifier.scopus-author-id37091626900
person.identifier.scopus-author-id57193559489
person.identifier.scopus-author-id8649758400
relation.isAuthorOfPublication2eea0284-22be-4cb8-8a14-192e56671b77
relation.isAuthorOfPublication4b6dcd84-a387-474c-a23b-299984fdcc92
relation.isAuthorOfPublicationbad3408c-ee33-431e-b9a6-cb778048975e
relation.isAuthorOfPublication.latestForDiscovery2eea0284-22be-4cb8-8a14-192e56671b77

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
BDCC2021.pdf
Tamanho:
469.89 KB
Formato:
Adobe Portable Document Format