Explainable predictive maintenance: autoencoders and rule-based explainer

dc.contributor.advisorVeloso, Bruno, orientador científico
dc.contributor.advisorGama, João, coorientador
dc.contributor.authorQueiroz , Ricardo Jorge Martins
dc.date.accessioned2023-11-22T16:37:10Z
dc.date.available2023-11-22T16:37:10Z
dc.date.issued2023-11-20
dc.description.abstractIn recent years, the increase in artificial intelligence’s prevalence and sophistication has accel erated its use in various fields. However, this growth has come with challenges, especially in the form of complex, opaque models. These models, frequently called "black boxes," have re markable predictive power but tend to obscure the logic behind their decisions, making them less trustworthy and adaptable in critical contexts. This dissertation explores the creation of a black box LSTM Autoencoder for predictive maintenance, utilizing the potential of explainable artificial intelligence (XAI). In particular, we employ and compare SHAP (SHapley Additive exPlanations) and AMRules, two XAI techniques, to explicate the outcomes and unravel the inner workings of this complex model. In this work, we determine the anomaly detection performance using three datasets: the first and second versions of the MetroPT and the Nasa datasets. We further examine the outcomes of each XAI method employed, highlighting their respective advantages and limita tions. In our investigation, we concluded that it is possible to explain the predictions generated by a black box model without compromising its performance.
dc.description.abstractNos últimos anos, o aumento da prevalência e sofisticação da inteligência artificial tem acelerado o seu uso numa grande variedade de campos. No entanto, este crescimento não veio sem desafios, especialmente na forma de modelos complexos e opacos. Estes modelos, que são frequentemente referidos como "caixas negras", têm um poder preditivo notável, mas tendem a obscurecer a lógica por trás de suas decisões, tornando-os menos confiáveis e adaptáveis em contextos críticos. Esta tese explora a criação de um LSTM Autoencoder para manutenção preditiva, utilizando o poten cial de inteligência artificial explicável (XAI). Em particular, empregamos e comparamos SHAP (SHapley Additive exPlanations) e AMRules, duas técnicas XAI, para explicar os resultados e desvendar as operações internas deste modelo complexo. Neste trabalho, determinamos o desem penho da detecção de anomalias usando três conjuntos de dados, as primeira e segunda versão do dataset MetroPT, bem como o dataset da NASA. Examinamos ainda os resultados de cada método XAI empregado, destacando suas respectivas vantagens e limitações. Na nossa investigação, con cluímos que é possível fornecer explicações para as previsões geradas por um modelo de caixa negra sem comprometer o seu desempenho.
dc.identifier.citationQueiroz, R. J. M. (2023). Explainable predictive maintenance: autoencoders and rule-based explainer [Dissertação de Mestrado em Ciência de Dados, Universidade Portucalense]. Repositório Institucional UPT. http://hdl.handle.net/11328/5227
dc.identifier.tid203552784
dc.identifier.urihttps://hdl.handle.net/11328/5227
dc.language.isoeng
dc.rightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectLSTM-Autoencoder
dc.subjectSHAP
dc.subjectAMRules
dc.subjectPredictive maintenance
dc.subjectXAI
dc.subjectAnomaly detection
dc.subject.fosCiências Naturais - Ciências da Computação e da Informação
dc.titleExplainable predictive maintenance: autoencoders and rule-based explainer
dc.typemaster thesis
dspace.entity.typePublication
thesis.degree.nameMestrado em Ciência de Dados

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
exemplar_2708.pdf
Size:
1.81 MB
Format:
Adobe Portable Document Format