Towards automatic gait analysis from an IT perspective: A kinesiology case

dc.contributor.authorCórdova, Matías
dc.contributor.authorDíaz, Jaime
dc.contributor.authorArango-López, Jeferson
dc.contributor.authorAhumada, Danay
dc.contributor.authorMoreira, Fernando
dc.date.accessioned2022-08-01T14:37:49Z
dc.date.available2022-08-01T14:37:49Z
dc.date.issued2022-05-11
dc.description.abstractCurrently, kinesiologists who study the posture of people during walking rely on spreadsheets and visual posture assessment. Some technologies make it possible to include sensors in people's bodies to identify their movements. Today, artificial intelligence is supporting many medical processes. In this sense, our proposal focuses on developing software based on Computer Vision and Artificial Intelligence. The software is deployed in a robust architecture based on microservices to support the process of image analysis with high concurrency. This software assists specialists in the analysis and measurements of lower extremity angles and distances during gait. On this occasion, we are working with a local medical center, specialists in caring for high-performance athletes. One of its crucial kinesiology care activities is the performance of kinematic gait analysis.pt_PT
dc.identifier.citationCórdova, M., Díaz, J., Arango-López, J., Ahumada, D., & Moreira, F. (2022). Towards automatic gait analysis from an IT perspective: A kinesiology case. In A. Rocha, H. Adeli, G. Dzemyda, & F. Moreira (Eds.), Information Systems and Technologies. WorldCIST 2022. Lecture Notes in Networks and Systems, (vol. 470, pp. 404-412). Springer, Cham. https://doi.org/10.1007/978-3-031-04829-6_36. Repositório Institucional UPT. http://hdl.handle.net/11328/4388pt_PT
dc.identifier.doihttps://doi.org/10.1007/978-3-031-04829-6_36pt_PT
dc.identifier.isbn978-3-031-04828-9 (Print)
dc.identifier.isbn978-3-031-04829-6 (Online)
dc.identifier.urihttp://hdl.handle.net/11328/4388
dc.language.isoporpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringer, Champt_PT
dc.rightsrestricted accesspt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectAutomatic gait analysispt_PT
dc.subjectMotion capturept_PT
dc.subjectDirect visionpt_PT
dc.subjectHealth information technologypt_PT
dc.subjectClinical decision-makingpt_PT
dc.titleTowards automatic gait analysis from an IT perspective: A kinesiology casept_PT
dc.typeconferenceObjectpt_PT
degois.publication.firstPage404pt_PT
degois.publication.lastPage412pt_PT
degois.publication.titleInformation Systems and Technologies. WorldCIST 2022. Lecture Notes in Networks and Systemspt_PT
degois.publication.volume470pt_PT
dspace.entity.typePublicationen
person.affiliation.nameUniversidade Portucalense
person.familyNameMoreira
person.givenNameFernando
person.identifier.ciencia-id7B1C-3A29-9861
person.identifier.orcid0000-0002-0816-1445
person.identifier.ridP-9673-2016
person.identifier.scopus-author-id8649758400
relation.isAuthorOfPublicationbad3408c-ee33-431e-b9a6-cb778048975e
relation.isAuthorOfPublication.latestForDiscoverybad3408c-ee33-431e-b9a6-cb778048975e

Files

Original bundle

Now showing 1 - 1 of 1
Name:
C68.pdf
Size:
779.81 KB
Format:
Adobe Portable Document Format