Demand modelling for responsive transport systems using digital footprints
dc.contributor.author | Gomes, Rui Jorge Reis | |
dc.contributor.author | Silva, Paulo | |
dc.contributor.author | Antunes, Francisco | |
dc.contributor.author | Bento , Carlos | |
dc.date.accessioned | 2025-07-11T11:44:21Z | |
dc.date.available | 2025-07-11T11:44:21Z | |
dc.date.issued | 2015-08-15 | |
dc.description.abstract | Traditionally, travel demand modelling focused on long-term multiple socio-economic scenarios and land-use configurations to estimate the required transport supply. However, the limited number of transportation requests in demand-responsive flexible transport systems require a higher resolution zoning. This work analyses users short-term destination choice patterns, with a careful analysis of the available data coming from various different sources, such as GPS traces and social networks. We use a Multinomial Logit Model, with a social component for utility and characteristics, both derived from Social Network Analyses. The results from the model show meaningful relationships between distance and attractiveness for all the different alternatives, with the variable distance being the most significant. | |
dc.identifier.citation | Silva, P., Antunes, F., Gomes, R., & Bento, C. (2015). Demand modelling for responsive transport systems using digital footprints. In F. Pereira, P. Machado, E. Costa, & A. Cardoso (Eds.), Progress in Artificial Intelligence: 17th Portuguese Conference on Artificial Intelligence, EPIA 2015 Proceedings, Lecture Notes in Computer Science, Coimbra, Portugal, 8-11 September 2015, (vol. 9273, pp. 181-186). Springer. https://doi.org/10.1007/978-3-319-23485-4_19. Repositório Institucional UPT. https://hdl.handle.net/11328/6448 | |
dc.identifier.isbn | 978-3-319-23484-7 | |
dc.identifier.isbn | 978-3-319-23485-4 | |
dc.identifier.uri | https://hdl.handle.net/11328/6448 | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.hasversion | https://doi.org/10.1007/978-3-319-23485-4_19 | |
dc.rights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Innovative transport mode | |
dc.subject | public transport operations | |
dc.subject | transport demand and behaviour | |
dc.subject | urban mobility and accessibility | |
dc.subject.fos | Ciências Naturais - Ciências da Computação e da Informação | |
dc.subject.ods | 11 - sustainable cities and communities | |
dc.title | Demand modelling for responsive transport systems using digital footprints | |
dc.type | conference paper | |
dcterms.references | https://link.springer.com/chapter/10.1007/978-3-319-23485-4_19#citeas | |
dspace.entity.type | Publication | |
oaire.citation.conferenceDate | 2015-09-08 | |
oaire.citation.conferencePlace | Coimbra, Portugal | |
oaire.citation.endPage | 186 | |
oaire.citation.startPage | 181 | |
oaire.citation.title | Progress in Artificial Intelligence: 17th Portuguese Conference on Artificial Intelligence, EPIA 2015 Proceedings | |
oaire.citation.volume | 9273 | |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | |
person.affiliation.name | REMIT – Research on Economics, Management and Information Technologies | |
person.familyName | Gomes | |
person.givenName | Rui Jorge Reis | |
person.identifier.ciencia-id | BD1D-F316-C1AA | |
person.identifier.gsid | https://scholar.google.pt/citations?user=SAHc0xsAAAAJ&hl=pt-PT | |
person.identifier.orcid | 0000-0001-7233-0736 | |
person.identifier.rid | N-7429-2018 | |
person.identifier.scopus-author-id | 55938890400 | |
relation.isAuthorOfPublication | 0f0e295b-09de-4caa-9534-42d59e6b94a2 | |
relation.isAuthorOfPublication.latestForDiscovery | 0f0e295b-09de-4caa-9534-42d59e6b94a2 |
Files
Original bundle
1 - 1 of 1