Demand modelling for responsive transport systems using digital footprints

dc.contributor.authorGomes, Rui Jorge Reis
dc.contributor.authorSilva, Paulo
dc.contributor.authorAntunes, Francisco
dc.contributor.authorBento , Carlos
dc.date.accessioned2025-07-11T11:44:21Z
dc.date.available2025-07-11T11:44:21Z
dc.date.issued2015-08-15
dc.description.abstractTraditionally, travel demand modelling focused on long-term multiple socio-economic scenarios and land-use configurations to estimate the required transport supply. However, the limited number of transportation requests in demand-responsive flexible transport systems require a higher resolution zoning. This work analyses users short-term destination choice patterns, with a careful analysis of the available data coming from various different sources, such as GPS traces and social networks. We use a Multinomial Logit Model, with a social component for utility and characteristics, both derived from Social Network Analyses. The results from the model show meaningful relationships between distance and attractiveness for all the different alternatives, with the variable distance being the most significant.
dc.identifier.citationSilva, P., Antunes, F., Gomes, R., & Bento, C. (2015). Demand modelling for responsive transport systems using digital footprints. In F. Pereira, P. Machado, E. Costa, & A. Cardoso (Eds.), Progress in Artificial Intelligence: 17th Portuguese Conference on Artificial Intelligence, EPIA 2015 Proceedings, Lecture Notes in Computer Science, Coimbra, Portugal, 8-11 September 2015, (vol. 9273, pp. 181-186). Springer. https://doi.org/10.1007/978-3-319-23485-4_19. Repositório Institucional UPT. https://hdl.handle.net/11328/6448
dc.identifier.isbn978-3-319-23484-7
dc.identifier.isbn978-3-319-23485-4
dc.identifier.urihttps://hdl.handle.net/11328/6448
dc.language.isoeng
dc.publisherSpringer
dc.relation.hasversionhttps://doi.org/10.1007/978-3-319-23485-4_19
dc.rightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectInnovative transport mode
dc.subjectpublic transport operations
dc.subjecttransport demand and behaviour
dc.subjecturban mobility and accessibility
dc.subject.fosCiências Naturais - Ciências da Computação e da Informação
dc.subject.ods11 - sustainable cities and communities
dc.titleDemand modelling for responsive transport systems using digital footprints
dc.typeconference paper
dcterms.referenceshttps://link.springer.com/chapter/10.1007/978-3-319-23485-4_19#citeas
dspace.entity.typePublication
oaire.citation.conferenceDate2015-09-08
oaire.citation.conferencePlaceCoimbra, Portugal
oaire.citation.endPage186
oaire.citation.startPage181
oaire.citation.titleProgress in Artificial Intelligence: 17th Portuguese Conference on Artificial Intelligence, EPIA 2015 Proceedings
oaire.citation.volume9273
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
person.affiliation.nameREMIT – Research on Economics, Management and Information Technologies
person.familyNameGomes
person.givenNameRui Jorge Reis
person.identifier.ciencia-idBD1D-F316-C1AA
person.identifier.gsidhttps://scholar.google.pt/citations?user=SAHc0xsAAAAJ&hl=pt-PT
person.identifier.orcid0000-0001-7233-0736
person.identifier.ridN-7429-2018
person.identifier.scopus-author-id55938890400
relation.isAuthorOfPublication0f0e295b-09de-4caa-9534-42d59e6b94a2
relation.isAuthorOfPublication.latestForDiscovery0f0e295b-09de-4caa-9534-42d59e6b94a2

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2015_EPIA_FINAL.pdf
Size:
332.79 KB
Format:
Adobe Portable Document Format