Exposing and explaining fake news on-the-fly

dc.contributor.authorArriba-Pérez, Francisco de
dc.contributor.authorGarcía-Méndez, Silvia
dc.contributor.authorLeal, Fátima
dc.contributor.authorMalheiro, Benedita
dc.contributor.authorBurguillo , Juan Carlos
dc.date.accessioned2024-04-18T10:43:14Z
dc.date.available2024-04-18T10:43:14Z
dc.date.issued2024-04-10
dc.description.abstractSocial media platforms enable the rapid dissemination and consumption of information. However, users instantly consume such content regardless of the reliability of the shared data. Consequently, the latter crowdsourcing model is exposed to manipulation. This work contributes with an explainable and online classification method to recognize fake news in real-time. The proposed method combines both unsupervised and supervised Machine Learning approaches with online created lexica. The profiling is built using creator-, content- and context-based features using Natural Language Processing techniques. The explainable classification mechanism displays in a dashboard the features selected for classification and the prediction confidence. The performance of the proposed solution has been validated with real data sets from Twitter and the results attain 80% accuracy and macro F-measure. This proposal is the first to jointly provide data stream processing, profiling, classification and explainability. Ultimately, the proposed early detection, isolation and explanation of fake news contribute to increase the quality and trustworthiness of social media contents.
dc.identifier.citationArriba-Pérez, F., García-Méndez, S., Leal, F., Malheiro, B., & Burguillo, J. C. (2024). Exposing and explaining fake news on-the-fly. Machine Learning, (Published online: 10 april 2024), 1-23. https://doi.org/10.1007/s10994-024-06527-w. Repositório Institucional UPT. https://hdl.handle.net/11328/5594
dc.identifier.issn1573-0565
dc.identifier.issn0885-6125
dc.identifier.urihttps://hdl.handle.net/11328/5594
dc.language.isoeng
dc.publisherSpringer
dc.relation.hasversionhttps://doi.org/10.1007/s10994-024-06527-w
dc.rightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectArtificial intelligence
dc.subjectData stream architecture
dc.subjectMachine learning
dc.subjectNatural language processing
dc.subjectReliability and transparency
dc.subjectSocial networking
dc.subject.fosCiências Naturais - Ciências da Computação e da Informação
dc.titleExposing and explaining fake news on-the-fly
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage23
oaire.citation.issuePublished online: 10 april 2024
oaire.citation.startPage1
oaire.citation.titleMachine Learning
person.affiliation.nameREMIT – Research on Economics, Management and Information Technologies
person.familyNameLeal
person.givenNameFátima
person.identifier.ciencia-id2211-3EC7-B4B6
person.identifier.orcid0000-0003-4418-2590
person.identifier.ridY-3460-2019
person.identifier.scopus-author-id57190765181
relation.isAuthorOfPublication8066078f-1e30-4b0a-aa84-3b6a2af4185c
relation.isAuthorOfPublication.latestForDiscovery8066078f-1e30-4b0a-aa84-3b6a2af4185c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Exposing and explaining fake news on-the-fly.pdf
Size:
1.95 MB
Format:
Adobe Portable Document Format