Crowdsourced data stream mining for tourism recommendation
Date
2021-04
Embargo
Advisor
Coadvisor
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Language
English
Alternative Title
Abstract
Crowdsourced data streams are continuous flows of data generated at high rate by users, also known as the crowd. These data streams are popular and extremely valuable in several domains. This is the case of tourism, where crowdsourcing platforms rely on tourist and business inputs to provide tailored recommendations to future tourists in real time. The continuous, open and non-curated nature of the crowd-originated data requires robust data stream mining techniques for on-line profiling, recommendation and evaluation. The sought techniques need, not only, to continuously improve profiles and learn models, but also be transparent, overcome biases, prioritise preferences, and master huge data volumes; all in real time. This article surveys the state-of-art in this field, and identifies future research opportunities.
Keywords
Crowdsourced data streams, Data stream mining, Profiling, Recommendation, Tourism
Document Type
conferenceObject
Publisher Version
10.1007/978-3-030-72657-7_25
Dataset
Citation
Leal F., Veloso B., Malheiro B.,& Burguillo J.C. (2021). Crowdsourced Data Stream Mining for Tourism Recommendation. In: Rocha Á., Adeli H., Dzemyda G., Moreira F., & Ramalho Correia A.M. (eds) Trends and Applications in Information Systems and Technologies, WorldCIST 2021. Advances in Intelligent Systems and Computing (1365, pp. 160-169). Doi:10.1007/978-3-030-72657-7_25. Disponível no Repositório UPT, http://hdl.handle.net/11328/3502
Identifiers
TID
Designation
Access Type
Open Access