Quantum Deep Learning: Reliability of deep learning empowered garbage sorting and detection by Visual Context for Aerial Images

dc.contributor.authorSingh, Khushwant
dc.contributor.authorYadav, Mohit
dc.contributor.authorMoreira, Fernando
dc.date.accessioned2025-07-30T11:52:05Z
dc.date.available2025-07-30T11:52:05Z
dc.date.issued2025-07-27
dc.description.abstractEnvironmental pollution by garbage is the biggest problem in most developing countries; garbage waste processing management and recycling are significant for ecological and economic reasons. Computer vision techniques are very advanced in many applications for object detection and classification, an extensive study on the use of artificial intelligence for garbage processing has been done and it is lagging because of dataset availability which has the top view images of garbage. A new dataset ‘KACHARA’ which has 4715 images of seven classes has been created. Classification is performed by the transfer learning by popular Deep learning model MobileNetv3 large with fine tuning the top layers achieving the classification accuracy of 94.37. Our proposed method yields an accuracy of 94.37% with 7 classes, the maximum in garbage where it was 5000 images, and 90% accuracy. CNN1 Model accuracy is 94% with only 2 classes of 6000 images. With 94.37% accuracy, our model classifies objects significantly. Deep learning and the principles of quantum computing have been used for garbage sorting and detection by visual context for aerial images.
dc.identifier.citationSingh, K., Yadav, M., & Moreira, F. (2025). Quantum Deep Learning: Reliability of deep learning empowered garbage sorting and detection by Visual Context for Aerial Images. In A. Rocha, C. Ferrás, H. Calvo (Eds.), Information Technology and Systems ICITS 2025, Volume 2: Conference proceedings. Part of the book series: Lecture Notes in Networks and Systems (LNNS, vol. 1448, pp. 105-114). Springer. https://doi.org/10.1007/978-3-031-93106-2_10. Repositório Institucional UPT. https://hdl.handle.net/11328/6556
dc.identifier.isbn978-3-031-93105-5
dc.identifier.isbn978-3-031-93106-2
dc.identifier.urihttps://hdl.handle.net/11328/6556
dc.language.isoeng
dc.publisherSpringer
dc.relationREMIT - Research on Economics, Management and Information Technologies (UIDB/05105/2020)
dc.relation.hasversionhttps://doi.org/10.1007/978-3-031-93106-2_10
dc.rightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectDeep learning
dc.subjectobject classification
dc.subjectobject detection
dc.subjecttransfer learning
dc.subjectaerial images
dc.subject.fosCiências Naturais - Ciências da Computação e da Informação
dc.titleQuantum Deep Learning: Reliability of deep learning empowered garbage sorting and detection by Visual Context for Aerial Images
dc.typeconference paper
dcterms.referenceshttps://link.springer.com/chapter/10.1007/978-3-031-93106-2_10#citeas
dspace.entity.typePublication
oaire.awardTitleREMIT - Research on Economics, Management and Information Technologies (UIDB/05105/2020)
oaire.awardURIhttps://hdl.handle.net/11328/5403
oaire.citation.endPage114
oaire.citation.startPage105
oaire.citation.titleInformation Technology and Systems ICITS 2025, Volume 2: Conference proceedings
oaire.citation.volume1448
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.affiliation.nameUniversidade Portucalense
person.familyNameMoreira
person.givenNameFernando
person.identifier.ciencia-id7B1C-3A29-9861
person.identifier.orcid0000-0002-0816-1445
person.identifier.ridP-9673-2016
person.identifier.scopus-author-id8649758400
relation.isAuthorOfPublicationbad3408c-ee33-431e-b9a6-cb778048975e
relation.isAuthorOfPublication.latestForDiscoverybad3408c-ee33-431e-b9a6-cb778048975e
relation.isProjectOfPublication916295ec-caa8-4105-9f18-6516c646e7a8
relation.isProjectOfPublication.latestForDiscovery916295ec-caa8-4105-9f18-6516c646e7a8

Files

Original bundle

Now showing 1 - 1 of 1
Name:
C97.pdf
Size:
3.46 MB
Format:
Adobe Portable Document Format