Framework for real-time predictive maintenance supported by big data technologies

dc.contributor.authorTeixeira, Marco
dc.contributor.authorThierstein, Francisco
dc.contributor.authorEntringer, Pedro
dc.contributor.authorSá, Hugo
dc.contributor.authorLeitão, José Demétrio
dc.contributor.authorLeal, Fátima
dc.date.accessioned2024-07-01T16:26:04Z
dc.date.available2024-07-01T16:26:04Z
dc.date.issued2024-05-11
dc.description.abstractIndustry 4.0 boosted the generation of large volumes of sensor data in manufacturing production lines. When adequately mined, this information can anticipate failures and launch maintenance actions increasing quality and productivity. This paper explores the integration of real-time big data techniques in industry. Specifically, this work contributes with a framework for real-time predictive maintenance supported by big data technologies. The proposed framework is composed of: (i) Apache Kafka as messaging system to manage sensor data; (ii) Spark as Machine Learning engine for large-scale data processing; and (iii) Cassandra as NoSQL distributed database. We showcase the synergy of these cutting-edge technologies in a predictive maintenance system tailored for the request. By leveraging advanced data analysis methods, we reveal hidden patterns and insights valuable for researchers across various disciplines. The experiments were performed with the NASA turbofan jet engine dataset, which includes run-to-failure simulated data from turbo fan jet engines.
dc.identifier.citationTeixeira, M., Thierstein, F., Entringer, P., Sá, H., Leitão, J. D., & Leal, F. (2024). Framework for real-time predictive maintenance supported by big data technologies. In Á. Rocha, H. Adeli, G. Dzemyda, F. Moreira, A. Poniszewska-Marańda (Eds.), Good Practices and New Perspectives in Information Systems and Technologies, WorldCIST 2024, vol. 1, (Lecture Notes in Networks and Systems, vol. 985, pp. 13-22). Springer. https://doi.org/10.1007/978-3-031-60215-3_2. Repositório Institucional UPT. https://hdl.handle.net/11328/5713
dc.identifier.isbn978-3-031-60215-3
dc.identifier.isbn978-3-031-60214-6
dc.identifier.urihttps://hdl.handle.net/11328/5713
dc.language.isoeng
dc.publisherSpringer
dc.relationThis work was supported by the UIDB/05105/2020 Program Contract, funded by national funds through the FCT I.P.
dc.relation.hasversionhttps://doi.org/10.1007/978-3-031-60215-3_2
dc.rightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectBig data techniques
dc.subjectIntegration of real-time
dc.subjectIndustry
dc.subjectReal-time predictive maintenance
dc.subject.fosCiências Naturais - Ciências da Computação e da Informação
dc.titleFramework for real-time predictive maintenance supported by big data technologies
dc.typeconference paper
dspace.entity.typePublication
oaire.citation.conferenceDate2024-03-26
oaire.citation.conferencePlaceLodz, Poland
oaire.citation.endPage22
oaire.citation.startPage13
oaire.citation.titleGood Practices and New Perspectives in Information Systems and Technologies, WorldCIST 2024
oaire.citation.volume1
person.affiliation.nameREMIT – Research on Economics, Management and Information Technologies
person.familyNameLeal
person.givenNameFátima
person.identifier.ciencia-id2211-3EC7-B4B6
person.identifier.orcid0000-0003-4418-2590
person.identifier.ridY-3460-2019
person.identifier.scopus-author-id57190765181
relation.isAuthorOfPublication8066078f-1e30-4b0a-aa84-3b6a2af4185c
relation.isAuthorOfPublication.latestForDiscovery8066078f-1e30-4b0a-aa84-3b6a2af4185c

Files

Original bundle

Now showing 1 - 1 of 1
Name:
Framework Big Data.pdf
Size:
12.82 MB
Format:
Adobe Portable Document Format