AI-Based Application to Predict Student Dropout in the National Learning Service SENA

dc.contributor.authorCabrera, Erika
dc.contributor.authorRamírez, Gabriel M.
dc.contributor.authorDiaz, Jaime
dc.contributor.authorMoreira, Fernando
dc.date.accessioned2024-07-01T14:41:28Z
dc.date.available2024-07-01T14:41:28Z
dc.date.issued2024-06-25
dc.description.abstractWe created a web application for the National Learning Service (NLS) in Colombia to identify students who are at risk of dropping out. This application helps the Student Welfare Department offer support to those who need it. We collected data on socio-economic variables that contributed to academic dropout and used it to develop the software. We explored different artificial intelligence techniques in the Machine Learning area and selected the best algorithm to integrate into the software. The resulting software has improved processes at NLS and can benefit other higher education institutions.
dc.identifier.citationCabrera, E., Ramírez, G. M., Diaz, J., & Moreira, F. (2024). AI-Based Application to Predict Student Dropout in the National Learning Service SENA. In [Proceedings of the] 2023 XIII International Conference on Virtual Campus (JICV), Porto, Portugal, 25-26 september 2023, (pp. 1-4). IEEE. https://doi.org/10.1109/JICV59748.2023.10565734. Repositório Institucional UPT. https://hdl.handle.net/11328/5708
dc.identifier.isbn979-8-3503-4344-1
dc.identifier.urihttps://hdl.handle.net/11328/5708
dc.language.isoeng
dc.publisherIEEE
dc.relation.hasversionhttps://doi.org/10.1109/JICV59748.2023.10565734
dc.rightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectSchool dropout
dc.subjectHigher Education
dc.subjectColombia
dc.subjectArtificial Intelligence
dc.subjectMachine Learning
dc.subject.fosCiências Naturais - Ciências da Computação e da Informação
dc.titleAI-Based Application to Predict Student Dropout in the National Learning Service SENA
dc.typeconference paper
dspace.entity.typePublication
oaire.citation.conferenceDate2023-09-25
oaire.citation.conferencePlacePorto, Portugal
oaire.citation.endPage4
oaire.citation.startPage1
oaire.citation.title2023 XIII International Conference on Virtual Campus (JICV)
person.affiliation.nameUniversidade Portucalense
person.familyNameMoreira
person.givenNameFernando
person.identifier.ciencia-id7B1C-3A29-9861
person.identifier.orcid0000-0002-0816-1445
person.identifier.ridP-9673-2016
person.identifier.scopus-author-id8649758400
relation.isAuthorOfPublicationbad3408c-ee33-431e-b9a6-cb778048975e
relation.isAuthorOfPublication.latestForDiscoverybad3408c-ee33-431e-b9a6-cb778048975e

Files

Original bundle

Now showing 1 - 1 of 1
Name:
P101.pdf
Size:
285.19 KB
Format:
Adobe Portable Document Format