AI-Based Application to Predict Student Dropout in the National Learning Service SENA
dc.contributor.author | Cabrera, Erika | |
dc.contributor.author | Ramírez, Gabriel M. | |
dc.contributor.author | Diaz, Jaime | |
dc.contributor.author | Moreira, Fernando | |
dc.date.accessioned | 2024-07-01T14:41:28Z | |
dc.date.available | 2024-07-01T14:41:28Z | |
dc.date.issued | 2024-06-25 | |
dc.description.abstract | We created a web application for the National Learning Service (NLS) in Colombia to identify students who are at risk of dropping out. This application helps the Student Welfare Department offer support to those who need it. We collected data on socio-economic variables that contributed to academic dropout and used it to develop the software. We explored different artificial intelligence techniques in the Machine Learning area and selected the best algorithm to integrate into the software. The resulting software has improved processes at NLS and can benefit other higher education institutions. | |
dc.identifier.citation | Cabrera, E., Ramírez, G. M., Diaz, J., & Moreira, F. (2024). AI-Based Application to Predict Student Dropout in the National Learning Service SENA. In [Proceedings of the] 2023 XIII International Conference on Virtual Campus (JICV), Porto, Portugal, 25-26 september 2023, (pp. 1-4). IEEE. https://doi.org/10.1109/JICV59748.2023.10565734. Repositório Institucional UPT. https://hdl.handle.net/11328/5708 | |
dc.identifier.isbn | 979-8-3503-4344-1 | |
dc.identifier.uri | https://hdl.handle.net/11328/5708 | |
dc.language.iso | eng | |
dc.publisher | IEEE | |
dc.relation.hasversion | https://doi.org/10.1109/JICV59748.2023.10565734 | |
dc.rights | restricted access | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | School dropout | |
dc.subject | Higher Education | |
dc.subject | Colombia | |
dc.subject | Artificial Intelligence | |
dc.subject | Machine Learning | |
dc.subject.fos | Ciências Naturais - Ciências da Computação e da Informação | |
dc.title | AI-Based Application to Predict Student Dropout in the National Learning Service SENA | |
dc.type | conference paper | |
dspace.entity.type | Publication | |
oaire.citation.conferenceDate | 2023-09-25 | |
oaire.citation.conferencePlace | Porto, Portugal | |
oaire.citation.endPage | 4 | |
oaire.citation.startPage | 1 | |
oaire.citation.title | 2023 XIII International Conference on Virtual Campus (JICV) | |
person.affiliation.name | Universidade Portucalense | |
person.familyName | Moreira | |
person.givenName | Fernando | |
person.identifier.ciencia-id | 7B1C-3A29-9861 | |
person.identifier.orcid | 0000-0002-0816-1445 | |
person.identifier.rid | P-9673-2016 | |
person.identifier.scopus-author-id | 8649758400 | |
relation.isAuthorOfPublication | bad3408c-ee33-431e-b9a6-cb778048975e | |
relation.isAuthorOfPublication.latestForDiscovery | bad3408c-ee33-431e-b9a6-cb778048975e |
Files
Original bundle
1 - 1 of 1