Sentence embedding approach using LSTM auto-encoder for discussion threads summarization
Files
Date
2023-08
Embargo
Advisor
Coadvisor
Journal Title
Journal ISSN
Volume Title
Publisher
ComSIS Consortium
Language
English
Alternative Title
Abstract
Online discussion forums are repositories of valuable information where users interact and articulate their ideas, opinions, and share experiences about nu merous topics. They are internet-based online communities where users can ask for help and find the solution to a problem. On online discussion forums, a new user becomes exhausted from reading the significant number of replies in a discussion. An automated discussion thread summarizing system (DTS) is necessary to create a candid view of the entire discussion of a query. Most of the previous approaches for automated DTS use the continuous bag of words (CBOW) model as a sentence embedding tool, which is poor at capturing the overall meaning of the sentence and is unable to grasp word dependency. To overcome this limitation, we introduce the LSTM Auto-encoder as a sentence embedding technique to improve the per formance of DTS. The empirical result in the context of average precision, recall, and F-measure of the proposed approach with respect to ROGUE-1 and ROUGE-2 of two standard experimental datasets proves the effectiveness and efficiency of the proposed approach and outperforms the state-of-the-art CBOW model in sentence embedding tasks by boosting the performance of the automated DTS model.
Keywords
Sentence embedding, LSTM Auto-encoder, CBOW, Deep learning, Machine learning, NLP
Document Type
Journal article
Publisher Version
Dataset
Citation
Khan, A. W., Al-Obeidat, F., Khalid, A., Adnan, A., & Moreira, F. (2023). Sentence embedding approach using LSTM auto-encoder for discussion threads summarization. Computer Science and Information Systems, OnLine-First, Issue 00, pp. 1-21. Repositório Institucional UPT. http://hdl.handle.net/11328/5061
Identifiers
TID
Designation
Access Type
Open Access