An advanced deep neuroevolution model for probabilistic load forecasting

dc.contributor.authorJalali, Seyed M.J.
dc.contributor.authorArora, Paul
dc.contributor.authorPanigrahi, B.K.
dc.contributor.authorKhosravi, Abbas
dc.contributor.authorNajavandi, Saeid
dc.contributor.authorCatalão, João P.S.
dc.contributor.authorOsório, Gerardo J.
dc.date.accessioned2022-07-29T10:51:07Z
dc.date.available2022-07-29T10:51:07Z
dc.date.issued2022-07-13
dc.description.abstractProbabilistic load forecasting (PLF) is necessary for power system operations and control as it assists in proper scheduling and dispatch. Moreover, PLF adequately captures the uncertainty whether that uncertainty is related to load data or the forecasting model. And there are not many PLF models, and those which exist are very complex or difficult to interpret. This paper proposes a novel neuroevolution algorithm for handling the uncertainty associated with load forecasting. In this paper, a new modified evolutionary algorithm is proposed which is used to find the optimal hyperparameters of 1D-Convolutional neural network (CNN). The probabilistic forecasts are produced by minimizing the mean scaled interval score loss function at 50%, 90% and 95% prediction intervals. The proposed neuroevolution algorithm is tested on a global energy forecasting competition (GEFCom-2014) load dataset, and two different experiments are conducted considering load only and one with load and temperature. Strong conclusions are drawn from these experiments. Also, the proposed model is compared with other benchmark models, and it has been shown that it outperforms the other models.pt_PT
dc.identifier.citationJalali, S. M. J., Arora, P., Panigrahi, B. K., Khosravi, A., Najavandi, S., Osório, G. J., & Catalão, J. P. S. (2022). An advanced deep neuroevolution model for probabilistic load forecasting. Electric Power Systems Research, 211(Article ID 108351), 1-7. https://doi.org/10.1016/j.epsr.2022.108351. Repositório Institucional UPT. http://hdl.handle.net/11328/4374pt_PT
dc.identifier.doihttps://doi.org/10.1016/j.epsr.2022.108351pt_PT
dc.identifier.urihttp://hdl.handle.net/11328/4374
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0378779622005107pt_PT
dc.rightsrestricted accesspt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectDeep learningpt_PT
dc.subjectNeuroevolutionpt_PT
dc.subjectProbabilistic load forecastingpt_PT
dc.subjectOptimizationpt_PT
dc.titleAn advanced deep neuroevolution model for probabilistic load forecastingpt_PT
dc.typejournal articlept_PT
degois.publication.firstPage1pt_PT
degois.publication.issueArticle ID 108351pt_PT
degois.publication.lastPage7pt_PT
degois.publication.titleElectric Power Systems Researchpt_PT
degois.publication.volume211pt_PT
dspace.entity.typePublicationen
person.affiliation.nameREMIT – Research on Economics, Management and Information Technologies
person.familyNameOsório
person.givenNameGerardo J.
person.identifier.ciencia-idBD19-D0AD-65DB
person.identifier.gsidt13DoaMAAAAJ
person.identifier.orcid0000-0001-8328-9708
person.identifier.ridC-3616-2014
person.identifier.scopus-author-id54783251300
relation.isAuthorOfPublication7ce5da40-610d-4361-a87f-5cbdfe392256
relation.isAuthorOfPublication.latestForDiscovery7ce5da40-610d-4361-a87f-5cbdfe392256

Files

Original bundle

Now showing 1 - 1 of 1
Name:
1-s2.0-S0378779622005107-main.pdf
Size:
1.24 MB
Format:
Adobe Portable Document Format