Resilient object detection for autonomous vehicles: Integrating deep learning and sensor fusion in adverse conditions

dc.contributor.authorThottempudi, Pardhu
dc.contributor.authorJambek, Asral Bin Bahari
dc.contributor.authorKumar, Vijay
dc.contributor.authorAcharya, Biswaranjan
dc.contributor.authorMoreira, Fernando
dc.date.accessioned2025-03-27T15:06:34Z
dc.date.available2025-03-27T15:06:34Z
dc.date.issued2025-03-26
dc.description.abstractAutonomous vehicles (AVs) rely on advanced object detection systems to ensure safe navigation, especially under adverse weather conditions that can impair sensor visibility and introduce detection challenges. This manuscript provides a comprehensive analysis of state-of-the-art methodologies, focusing on deep learning frameworks, multi-sensor fusion techniques, and specialized datasets designed for AV object detection across various environmental conditions. We categorize approaches based on accuracy, computational efficiency, and resilience to challenging weather scenarios, offering insights into the strengths and limitations of each technique. Additionally, widely used datasets, such as KITTI and Waymo, along with synthetic and real-time datasets, are evaluated to assess their impact on detection accuracy in complex scenarios. While deep learning models demonstrate high accuracy, the integration of sensor fusion and transfer learning techniques further enhances robustness and adaptability. Our findings emphasize the importance of developing weather-resilient AV perception systems and provide recommendations for advancing object detection frameworks in autonomous driving applications.
dc.identifier.citationThottempudi, P., Jambek, A. B. B., Kumar, V., Acharya, B., & Moreira, F. (2025). Resilient object detection for autonomous vehicles: Integrating deep learning and sensor fusion in adverse conditions. Engineering Applications of Artificial Intelligence, 151(Published online: 26 March 2025), 1-24. https://doi.org/10.1016/j.engappai.2025.110563. Repositório Institucional UPT. https://hdl.handle.net/11328/6226
dc.identifier.issn0952-1976
dc.identifier.urihttps://hdl.handle.net/11328/6226
dc.language.isoeng
dc.publisherElsevier
dc.relation.hasversionhttps://doi.org/10.1016/j.engappai.2025.110563
dc.rightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectAutonomous vehicles
dc.subjectObject detection
dc.subjectDeep learning
dc.subjectSensor fusion
dc.subjectAdverse weather conditions
dc.subjectDataset analysis
dc.subjectTransfer learning
dc.subjectMachine vision
dc.subject.fosCiências Naturais - Ciências da Computação e da Informação
dc.titleResilient object detection for autonomous vehicles: Integrating deep learning and sensor fusion in adverse conditions
dc.typejournal article
dcterms.referenceshttps://www.sciencedirect.com/science/article/pii/S0952197625005639
dspace.entity.typePublication
oaire.citation.endPage24
oaire.citation.issuePublished online: 26 March 2025
oaire.citation.startPage1
oaire.citation.titleEngineering Applications of Artificial Intelligence
oaire.citation.volume151
person.affiliation.nameUniversidade Portucalense
person.familyNameMoreira
person.givenNameFernando
person.identifier.ciencia-id7B1C-3A29-9861
person.identifier.orcid0000-0002-0816-1445
person.identifier.ridP-9673-2016
person.identifier.scopus-author-id8649758400
relation.isAuthorOfPublicationbad3408c-ee33-431e-b9a6-cb778048975e
relation.isAuthorOfPublication.latestForDiscoverybad3408c-ee33-431e-b9a6-cb778048975e

Files

Original bundle

Now showing 1 - 1 of 1
Name:
J116.pdf
Size:
1.22 MB
Format:
Adobe Portable Document Format