A novel ensemble transfer learning approach for lung cancer classification using advance VGGNet16 with wavelet transform equalization & CL-PSO

dc.contributor.authorDas, Manmath Nath
dc.contributor.authorPanda, Niranjan
dc.contributor.authorRautray, Rasmita
dc.contributor.authorTripathy, Jyotsnarani
dc.contributor.authorMoreira, Fernando
dc.date.accessioned2025-12-11T15:31:11Z
dc.date.available2025-12-11T15:31:11Z
dc.date.issued2026-01-01
dc.description.abstractLung cancer poses severe burden to the world and well-yield and requiring high-yield and easily deployable diagnostic strategies. This study proposes an enhanced deep learning approach for early lung cancer diagnosis using a fine-tuned VGG-16 model optimized with Comprehensive Learning Particle Swarm Optimization (CL-PSO). To mitigate data imbalance and enhance feature visibility in CT scans, the framework introduces the Wavelet Transform Equalization in the preprocessing and utilizes class-weighted training to improve detection sensitivity, especially for the underrepresented benign cases. The model scored almost perfect classifications of the IQ-OTH/NCCD dataset with an accuracy of 99.99 %, precision and recall of 99.98 %, F1-score of 99.99 % and the AUC-ROC of 1.00. Grad-CAM visualizations further enhanced the model's interpretability and confirming that its predictions corresponded with radiological decision points. Apart from that, the model responded robustly to noise, occlusion, illumination, and below 50 ms per image. This results making model an ideal for real-time integration into imager based hospital PACS and edge based healthcare systems.
dc.identifier.citationDas, M. N., Panda, N., Rautray, R., Tripathy, J., & Moreira, F. (2026). A novel ensemble transfer learning approach for lung cancer classification using advance VGGNet16 with wavelet transform equalization & CL-PSO. Computers in Biology and Medicine, 200, (published online: 09 December 2025), 111338, 1-15. https://doi.org/10.1016/j.compbiomed.2025.111338. Repositório Institucional UPT. https://hdl.handle.net/11328/6827
dc.identifier.issn0010-4825
dc.identifier.issn1879-0534
dc.identifier.urihttps://hdl.handle.net/11328/6827
dc.language.isoeng
dc.publisherElsevier
dc.relation.hasversionhttps://doi.org/10.1016/j.compbiomed.2025.111338
dc.rightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectVGG-16
dc.subjectCL-PSO
dc.subjectTransfer learning
dc.subjectHyper-parameter optimization
dc.subjectWavelet transform equalization
dc.subjectLung cancer detection
dc.subjectDeep learning
dc.subjectMedical imaging
dc.subject.fosCiências Naturais - Ciências da Computação e da Informação
dc.titleA novel ensemble transfer learning approach for lung cancer classification using advance VGGNet16 with wavelet transform equalization & CL-PSO
dc.typejournal article
dcterms.referenceshttps://www.sciencedirect.com/science/article/pii/S0010482525016920?via%3Dihub
dspace.entity.typePublication
oaire.citation.endPage15
oaire.citation.startPage1
oaire.citation.titleComputers in Biology and Medicine
oaire.citation.volume200
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.affiliation.nameUniversidade Portucalense
person.familyNameMoreira
person.givenNameFernando
person.identifier.ciencia-id7B1C-3A29-9861
person.identifier.orcid0000-0002-0816-1445
person.identifier.ridP-9673-2016
person.identifier.scopus-author-id8649758400
relation.isAuthorOfPublicationbad3408c-ee33-431e-b9a6-cb778048975e
relation.isAuthorOfPublication.latestForDiscoverybad3408c-ee33-431e-b9a6-cb778048975e

Files

Original bundle

Now showing 1 - 1 of 1
Name:
J130.pdf
Size:
5.71 MB
Format:
Adobe Portable Document Format