Machine-learning-based frameworks for reliable and sustainable crop forecasting

dc.contributor.authorSingh, Khushwant
dc.contributor.authorYadav, Mohit
dc.contributor.authorBarak, Dheerdhwaj
dc.contributor.authorBansal, Shivani
dc.contributor.authorMoreira, Fernando
dc.date.accessioned2025-05-23T16:27:05Z
dc.date.available2025-05-23T16:27:05Z
dc.date.issued2025-05-20
dc.description.abstractFueled by scientific innovations and data-driven approaches, accurate agriculture has arisen as a transformative sector in contemporary agriculture. The present investigation provides a summary of modern improvements in machine-learning (ML) strategies utilized for crop prediction, accompanied by a performance exploration of contemporary models. It examines the amalgamation of sophisticated technologies, cooperative objectives, and data-driven methodologies designed to address the obstacles in conventional agriculture. The study examines the possibilities and intricacies of precision agriculture by analyzing various models of deep learning, machine learning, ensemble learning, and reinforcement learning. Highlighting the significance of worldwide collaboration and data-sharing activities elucidates the evolving landscape of the precision farming industry and indicates prospective advancements in the sector.
dc.identifier.citationSingh, K., Yadav, M., Barak, D., Bansal, S., & Moreira, F. (2025). Machine-learning-based frameworks for reliable and sustainable crop forecasting. Sustainability, 17(10), 4711, 1-26. https://doi.org/10.3390/su17104711. Repositório Institucional UPT. https://hdl.handle.net/11328/6322
dc.identifier.issn2071-1050
dc.identifier.urihttps://hdl.handle.net/11328/6322
dc.language.isoeng
dc.publisherMDPI - Multidisciplinary Digital Publishing Institute
dc.relationThis work is funded by national funds through FCT—Fundação para a Ciência e a Tecnologia, I.P., under the support of UID/05105: REMIT—Investigação em Economia, Gestão e Tecnologias da Informação.
dc.relation.hasversionhttps://doi.org/10.3390/su17104711
dc.rightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectCrop prediction
dc.subjectmachine learning
dc.subjectdeep learning
dc.subjectsmart farming
dc.subjectprecision agriculture
dc.subject.fosCiências Naturais - Ciências da Computação e da Informação
dc.titleMachine-learning-based frameworks for reliable and sustainable crop forecasting
dc.typejournal article
dcterms.referenceshttps://www.mdpi.com/2071-1050/17/10/4711
dspace.entity.typePublication
oaire.citation.endPage26
oaire.citation.issue10
oaire.citation.startPage1
oaire.citation.titleSustainability
oaire.citation.volume17
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.affiliation.nameUniversidade Portucalense
person.familyNameMoreira
person.givenNameFernando
person.identifier.ciencia-id7B1C-3A29-9861
person.identifier.orcid0000-0002-0816-1445
person.identifier.ridP-9673-2016
person.identifier.scopus-author-id8649758400
relation.isAuthorOfPublicationbad3408c-ee33-431e-b9a6-cb778048975e
relation.isAuthorOfPublication.latestForDiscoverybad3408c-ee33-431e-b9a6-cb778048975e

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
J119.pdf
Size:
1.77 MB
Format:
Adobe Portable Document Format