Facial emotion recognition through artificial intelligence

dc.contributor.authorBallesteros, Jesús A.
dc.contributor.authorRamírez V., Gabriel M.
dc.contributor.authorSolano, Andrés
dc.contributor.authorPelaez, Carlos A.
dc.contributor.authorMoreira, Fernando
dc.date.accessioned2024-02-05T17:16:48Z
dc.date.available2024-02-05T17:16:48Z
dc.date.issued2024-01-31
dc.description.abstractThis paper introduces a study employing artificial intelligence (AI) to utilize computer vision algorithms for detecting human emotions in video content during user interactions with diverse visual stimuli. The research aims to unveil the creation of software capable of emotion detection by leveraging AI algorithms and image processing pipelines to identify users' facial expressions. The process involves assessing users through images and facilitating the implementation of computer vision algorithms aligned with psychological theories defining emotions and their recognizable features. The study demonstrates the feasibility of emotion recognition through convolutional neural networks (CNN) and software development and training based on facial expressions. The results highlight successful emotion identification; however, precision improvement necessitates further training for contexts with more diverse images and additional algorithms to distinguish closely related emotional patterns. The discussion and conclusions emphasize the potential of A.I. and computer vision algorithms in emotion detection, providing insights into software development, ongoing training, and the evolving landscape of emotion recognition technology. Further training is necessary for contexts with more diverse images, alongside additional algorithms that can effectively distinguish between facial expressions depicting closely related emotional patterns, enhancing certainty and accuracy.
dc.identifier.citationBallesteros, J. A., Ramírez V., G. M., Moreira, F., Solano, A., & Pelaez, C. A. (2024). Facial emotion recognition through artificial intelligence. Frontiers in Computer Science, 6(Published online: 31 january 2024), 1-14. https://doi.org/10.3389/fcomp.2024.1359471. Repositório Institucional UPT. https://hdl.handle.net/11328/5367
dc.identifier.doihttps://doi.org/10.3389/fcomp.2024.1359471
dc.identifier.issn2624-9898
dc.identifier.urihttps://hdl.handle.net/11328/5367
dc.language.isoeng
dc.publisherFrontiers Media
dc.relationREMIT - Research on Economics, Management and Information Technologies (UIDB/05105/2020)
dc.relation.hasversionhttps://www.frontiersin.org/articles/10.3389/fcomp.2024.1359471/full
dc.rightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectFacial emotion
dc.subjectRecognition
dc.subjectAI
dc.subjectConvolutional neural network
dc.subjectImages
dc.titleFacial emotion recognition through artificial intelligence
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleREMIT - Research on Economics, Management and Information Technologies (UIDB/05105/2020)
oaire.awardURIhttps://hdl.handle.net/11328/5403
oaire.citation.endPage14
oaire.citation.issuePublished online: 31 january 2024
oaire.citation.startPage1
oaire.citation.titleFrontiers in Computer Science
oaire.citation.volume6
oaire.fundingStream6817 - DCRRNI ID
person.affiliation.nameUniversidade Portucalense
person.familyNameMoreira
person.givenNameFernando
person.identifier.ciencia-id7B1C-3A29-9861
person.identifier.orcid0000-0002-0816-1445
person.identifier.ridP-9673-2016
person.identifier.scopus-author-id8649758400
relation.isAuthorOfPublicationbad3408c-ee33-431e-b9a6-cb778048975e
relation.isAuthorOfPublication.latestForDiscoverybad3408c-ee33-431e-b9a6-cb778048975e
relation.isProjectOfPublication916295ec-caa8-4105-9f18-6516c646e7a8
relation.isProjectOfPublication.latestForDiscovery916295ec-caa8-4105-9f18-6516c646e7a8

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
J90.pdf
Size:
2.41 MB
Format:
Adobe Portable Document Format