A 2020 perspective on “Scalable modelling and recommendation using wiki-based crowdsourced repositories:” Fairness, scalability, and real-time recommendation

dc.contributor.authorVeloso, Bruno
dc.contributor.authorMalheiro, Benedita
dc.contributor.authorGonzález-Vélez, Horacio
dc.contributor.authorBurguillo, Juan Carlos
dc.contributor.authorLeal, Fátima
dc.date.accessioned2022-04-28T11:52:34Z
dc.date.available2022-04-28T11:52:34Z
dc.date.issued2020-04
dc.description.abstractWiki-based crowdsourced data sources generally lack reliability, as their provenance is not intrinsically marshalled. By using recommendation, one may arguably assess the reliability of wiki-based repositories in order to identify the most interesting articles for a given domain. In this commentary, we explore current trends in scalable modelling and recommendation methods based on side information such as the quality and popularity of wiki articles. The systematic parallelization of such profiling and recommendation algorithms allows the concurrent processing of distributed crowdsourced Wikidata repositories. These algorithms, which perform incremental updating, need further research to improve the performance and generate up-to-date high-quality recommendations. This article builds upon our previous work (Leal et al., 2019) by extending the literature review and identifying important trends and challenges pertaining to crowdsourcing platforms, particularly those of Wikidata provenance.pt_PT
dc.identifier.citationLeal, F., Veloso, B., Malheiro, B., González-Vélez, H., & Burguillo, J. C. (2020). A 2020 perspective on “Scalable modelling and recommendation using wiki-based crowdsourced repositories:” Fairness, scalability, and real-time recommendation. Electronic Commerce Research and Applications, 40(March-April 2020), 100951. https://doi.org/10.1016/j.elerap.2020.100951. Repositório Institucional UPT. http://hdl.handle.net/11328/4052pt_PT
dc.identifier.doihttps://doi.org/10.1016/j.elerap.2020.100951pt_PT
dc.identifier.issn1567-4223 (Print)
dc.identifier.urihttp://hdl.handle.net/11328/4052
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1567422320300284pt_PT
dc.rightsrestricted accesspt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectAlgorithmic fairnesspt_PT
dc.subjectCrowdsourcingpt_PT
dc.subjectData stream miningpt_PT
dc.subjectProfilingpt_PT
dc.subjectRecommendationpt_PT
dc.subjectScalabilitypt_PT
dc.titleA 2020 perspective on “Scalable modelling and recommendation using wiki-based crowdsourced repositories:” Fairness, scalability, and real-time recommendationpt_PT
dc.typejournal articlept_PT
degois.publication.firstPage100951pt_PT
degois.publication.titleElectronic Commerce Research and Applicationspt_PT
dspace.entity.typePublicationen
person.affiliation.nameREMIT – Research on Economics, Management and Information Technologies
person.familyNameLeal
person.givenNameFátima
person.identifier.ciencia-id2211-3EC7-B4B6
person.identifier.orcid0000-0003-4418-2590
person.identifier.ridY-3460-2019
person.identifier.scopus-author-id57190765181
relation.isAuthorOfPublication8066078f-1e30-4b0a-aa84-3b6a2af4185c
relation.isAuthorOfPublication.latestForDiscovery8066078f-1e30-4b0a-aa84-3b6a2af4185c

Files

Original bundle

Now showing 1 - 1 of 1
Name:
1-s2.0-S1567422320300284-main.pdf
Size:
141.2 KB
Format:
Adobe Portable Document Format