Strange attractors in a dynamical system inspired by a seasonally forced SIR model

dc.contributor.authorCarvalho, João Maurício
dc.contributor.authorRodrigues, Alexandre A.
dc.date.accessioned2025-07-10T15:47:20Z
dc.date.available2025-07-10T15:47:20Z
dc.date.issued2022-06-01
dc.description.abstractWe analyze a multiparameter periodically-forced dynamical system inspired in the SIR endemic model. We show that the condition on the basic reproduction number is not sufficient to guarantee the elimination of Infectious individuals due to a backward bifurcation. Using the theory of rank-one attractors, for an open subset in the space of parameters where , the flow exhibits persistent strange attractors. These sets are not confined to a tubular neighborhood in the phase space, shadow the ghost of a two-dimensional invariant torus and are numerically observable. Although numerical experiments have already suggested that periodically-forced biological models may exhibit observable chaos, a rigorous proof was not given before. Our results agree well with the empirical belief that intense seasonality induces chaos.
dc.identifier.citationCarvalho, J. M., & Rodrigues, A. A. (2022). Strange attractors in a dynamical system inspired by a seasonally forced SIR model. Physica D: Nonlinear Phenomena, 434, 133268, 1-12. https://doi.org/10.1016/j.physd.2022.133268. Repositório Institucional UPT. https://hdl.handle.net/11328/6441
dc.identifier.issn0167-2789
dc.identifier.issn1872-8022
dc.identifier.urihttps://hdl.handle.net/11328/6441
dc.language.isoeng
dc.publisherElsevier
dc.relation.hasversionhttps://doi.org/10.1016/j.physd.2022.133268
dc.rightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectSIR model
dc.subjectSeasonality
dc.subjectBasic reproduction number
dc.subjectBackward bifurcation
dc.subjectStrange attractors
dc.subjectObservable chaos
dc.subject.fosCiências Naturais - Ciências da Computação e da Informação
dc.titleStrange attractors in a dynamical system inspired by a seasonally forced SIR model
dc.typejournal article
dcterms.referenceshttps://www.sciencedirect.com/science/article/pii/S0167278922000719?via%3Dihub
dspace.entity.typePublication
oaire.citation.endPage12
oaire.citation.startPage1
oaire.citation.titlePhysica D: Nonlinear Phenomena
oaire.citation.volume434
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.affiliation.nameREMIT – Research on Economics, Management and Information Technologies
person.familyNameCarvalho
person.givenNameJoão Maurício
person.identifier.ciencia-idD818-32ED-1DE4
person.identifier.orcidhttps://orcid.org/0000-0001-7709-1631
person.identifier.ridNWH-4741-2025
person.identifier.scopus-author-id57222719456
relation.isAuthorOfPublicationb891547e-bf6b-43c2-af21-345518092be9
relation.isAuthorOfPublication.latestForDiscoveryb891547e-bf6b-43c2-af21-345518092be9

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
StrangeAttractors (2022).pdf
Size:
644.92 KB
Format:
Adobe Portable Document Format