A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency
Date
2020-04
Embargo
Advisor
Coadvisor
Journal Title
Journal ISSN
Volume Title
Publisher
Language
English
Alternative Title
Abstract
Tourism crowdsourcing platforms accumulate and use large volumes of feedback data on tourism-related services to provide personalized recommendations with high impact on future tourist behavior. Typically, these recommendation engines build individual tourist profiles and suggest hotels, restaurants, attractions or routes based on the shared ratings, reviews, photos, videos or likes. Due to the dynamic nature of this scenario, where the crowd produces a continuous stream of events, we have been exploring stream-based recommendation methods, using stochastic gradient descent (SGD), to incrementally update the prediction models and post-filters to reduce the search space and improve the recommendation accuracy. In this context, we offer an update and comment on our previous article (Veloso et al., 2019a) by providing a recent literature review and identifying the challenges laying ahead concerning the online recommendation of tourism resources supported by crowdsourced data.
Keywords
Data stream mining, Profiling, Recommendation, Post-filtering
Document Type
Journal article
Publisher Version
Dataset
Citation
Veloso, B., Leal, F., Malheiro, B., & Burguillo, J. C. (2020). A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency. Electronic Commerce Research and Applications, 40(March–April 2020), 100957. https://doi.org/10.1016/j.elerap.2020.100957. Repositório Institucional UPT. http://hdl.handle.net/11328/4051
Identifiers
TID
Designation
Access Type
Restricted Access