AI Integration in Organisational Workflows: A Case Study on Job Reconfiguration, Efficiency, and Workforce Adaptation

dc.contributor.authorOliveira, Pedro
dc.contributor.authorCarvalho, João M. S.
dc.contributor.authorFaria, Sílvia
dc.date.accessioned2025-09-16T15:04:07Z
dc.date.available2025-09-16T15:04:07Z
dc.date.issued2025-09-03
dc.description.abstractThis study investigates how the integration of artificial intelligence (AI) transforms job practices within a leading European infrastructure company. Grounded in the Feeling Economy framework, the research explores the shift in task composition following AI implementation, focusing on the emergence of new roles, required competencies, and the ongoing reconfiguration of work. Using a qualitative, single-case study methodology, data were collected through semi-structured interviews with ten employees and company documentation. Thematic analysis revealed five key dimensions: the reconfiguration of job tasks, the improvement of efficiency and quality, psychological and adaptation challenges, the need for AI-related competencies, and concerns about dehumanisation. Findings show that AI systems increasingly assume repetitive and analytical tasks, enabling workers to focus on strategic, empathetic, and creative responsibilities. However, psychological resistance, fears of job displacement, and a perceived erosion of human interaction present implementation barriers. The study provides theoretical contributions by empirically extending the Feeling Economy and task modularisation frameworks. It also offers managerial insights into workforce adaptation, training needs, and the importance of ethical and emotionally intelligent AI integration. Additionally, this study highlights that the Feeling Economy must address AI’s epistemic risks, emphasising fairness, transparency, and participatory governance as essential for trustworthy, emotionally intelligent, and sustainable AI systems.
dc.identifier.citationOliveira, P., Carvalho, J. M. S., & Faria, S. (2025). AI Integration in Organisational Workflows: A Case Study on Job Reconfiguration, Efficiency, and Workforce Adaptation. Information, 16(9), 764, 1-22. https://doi.org/10.3390/info16090764. Repositório Institucional UPT. https://hdl.handle.net/11328/6655
dc.identifier.issn2078-2489
dc.identifier.urihttps://hdl.handle.net/11328/6655
dc.language.isoeng
dc.publisherMDPI - Multidisciplinary Digital Publishing Institute
dc.relationREMIT - Research on Economics, Management and Information Technologies (UIDB/05105/2020)
dc.relation.hasversionhttps://doi.org/10.3390/info16090764
dc.rightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectartificial intelligence
dc.subjectfeeling economy
dc.subjectjob reconfiguration
dc.subjecttask automation
dc.subjectjob displacement
dc.subjectAI integration
dc.subjectworkplace efficiency
dc.subjectorganisational change
dc.subjectskills development
dc.subjectemployee adaptation
dc.subject.fosCiências Sociais - Economia e Gestão
dc.titleAI Integration in Organisational Workflows: A Case Study on Job Reconfiguration, Efficiency, and Workforce Adaptation
dc.typejournal article
dcterms.referenceshttps://www.mdpi.com/2078-2489/16/9/764
dspace.entity.typePublication
oaire.awardTitleREMIT - Research on Economics, Management and Information Technologies (UIDB/05105/2020)
oaire.awardURIhttps://hdl.handle.net/11328/5403
oaire.citation.endPage22
oaire.citation.issue9
oaire.citation.startPage1
oaire.citation.titleInformation
oaire.citation.volume16
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.affiliation.nameREMIT – Research on Economics, Management and Information Technologies
person.affiliation.nameREMIT – Research on Economics, Management and Information Technologies
person.familyNameCarvalho
person.familyNameFaria
person.givenNameJoão M. S.
person.givenNameSílvia
person.identifier.ciencia-idF81A-B9D1-200D
person.identifier.ciencia-id1D19-2036-56AF
person.identifier.orcid0000-0003-0683-296X
person.identifier.orcid0000-0002-7672-3972
person.identifier.ridU-3457-2019
person.identifier.ridAEE-0340-2022
person.identifier.scopus-author-id57209932043
person.identifier.scopus-author-id57216458139
relation.isAuthorOfPublication43ffe406-9c1c-4694-8572-06d99791d3f6
relation.isAuthorOfPublication8386d958-d5bd-4108-a2a5-dfb226529fdf
relation.isAuthorOfPublication.latestForDiscovery43ffe406-9c1c-4694-8572-06d99791d3f6
relation.isProjectOfPublication916295ec-caa8-4105-9f18-6516c646e7a8
relation.isProjectOfPublication.latestForDiscovery916295ec-caa8-4105-9f18-6516c646e7a8

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
214.pdf
Size:
257.99 KB
Format:
Adobe Portable Document Format