Federated quantum-inspired anomaly detection using collaborative neural clients
| dc.contributor.author | Godavarthi, Deepthi | |
| dc.contributor.author | Rekapalli, Venkata Charan Sathvik | |
| dc.contributor.author | Mohanty, Sribidhya | |
| dc.contributor.author | Jaswanth, J. V. S. D. Vigneswara | |
| dc.contributor.author | Polisetty, Dinesh | |
| dc.contributor.author | Dash, Bibhuti Bhusan | |
| dc.contributor.author | Moreira, Fernando | |
| dc.date.accessioned | 2025-09-15T13:07:27Z | |
| dc.date.available | 2025-09-15T13:07:27Z | |
| dc.date.issued | 2025-08-25 | |
| dc.description.abstract | The fusion of deep-learning-based and federated methods has brought great progress in anomaly detection. Yet the systems of today still suffer from certain glaring issues. First, aggregation of data on a central entity poses dangerous privacy hazards. Second, such models could not scale and adapt to heterogeneous and distributed environments. Lastly, fine consideration has hardly been given to quantum-inspired computational paradigms that may promise to improve both speed and security of such systems. To fill in these gaps, this research proposes a completely novel quantum-inspired federated learning approach to anomaly detection that keeps data private and allows for further implementations of quantum computing applications. | |
| dc.identifier.citation | Godavarthi, D., Rekapalli, V. C. S., Mohanty, S., Jaswanth, J. V. S. D. V., Polisetty, D., Dash, B. B., & Moreira, F. [2025). Federated quantum-inspired anomaly detection using collaborative neural clients. Frontiers in Artificial Intelligence, 8, 1648609, 1-19. https://doi.org/10.3389/frai.2025.1648609. Repositório Institucional UPT. https://hdl.handle.net/11328/6649 | |
| dc.identifier.issn | 2624-8212 | |
| dc.identifier.uri | https://hdl.handle.net/11328/6649 | |
| dc.language.iso | eng | |
| dc.publisher | Frontiers Media S.A. | |
| dc.relation.hasversion | https://doi.org/10.3389/frai.2025.1648609 | |
| dc.rights | open access | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject | Deep-learning-based | |
| dc.subject | federated methods | |
| dc.subject | anomaly detection | |
| dc.subject.fos | Ciências Naturais - Ciências da Computação e da Informação | |
| dc.title | Federated quantum-inspired anomaly detection using collaborative neural clients | |
| dc.type | journal article | |
| dcterms.references | https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2025.1648609/full | |
| dspace.entity.type | Publication | |
| oaire.citation.endPage | 19 | |
| oaire.citation.startPage | 1 | |
| oaire.citation.title | Frontiers in Artificial Intelligence | |
| oaire.citation.volume | 8 | |
| oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| person.affiliation.name | Universidade Portucalense | |
| person.familyName | Moreira | |
| person.givenName | Fernando | |
| person.identifier.ciencia-id | 7B1C-3A29-9861 | |
| person.identifier.orcid | 0000-0002-0816-1445 | |
| person.identifier.rid | P-9673-2016 | |
| person.identifier.scopus-author-id | 8649758400 | |
| relation.isAuthorOfPublication | bad3408c-ee33-431e-b9a6-cb778048975e | |
| relation.isAuthorOfPublication.latestForDiscovery | bad3408c-ee33-431e-b9a6-cb778048975e |
Files
Original bundle
1 - 1 of 1