Physiological inspired neural networks for emotion recognition

Date

2018

Embargo

Advisor

Coadvisor

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE
Language
English

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

Facial expression recognition (FER) is currently one of the most active research topics due to its wide range of applications in the human-computer interaction field. An important part of the recent success of automatic FER was achieved thanks to the emergence of deep learning approaches. However, training deep networks for FER is still a very challenging task, since most of the available FER data sets are relatively small. Although transfer learning can partially alleviate the issue, the performance of deep models is still below of its full potential as deep features may contain redundant information from the pre-trained domain. Instead, we propose a novel end-to-end neural network architecture along with a well-designed loss function based on the strong prior knowledge that facial expressions are the result of the motions of some facial muscles and components. The loss function is defined to regularize the entire learning process so that the proposed neural network is able to explicitly learn expression-specific features. Experimental results demonstrate the effectiveness of the proposed model in both lab-controlled and wild environments. In particular, the proposed neural network provides quite promising results, outperforming in most cases the current state-of-the-art methods.

Keywords

Facial expressions recognition, Convolutional neural networks, Regularization, Domain-knowledge

Document Type

Journal article

Publisher Version

10.1109/ACCESS.2018.2870063

Dataset

Citation

Ferreira, P. M., Marques, F., Cardoso, J. S., & Rebelo, A. (2018). Physiological inspired neural networks for emotion recognition,, 6, 53930-53943. doi: 10.1109/ACCESS.2018.2870063. Disponível no Repositório UPT, http://hdl.handle.net/11328/2469

TID

Designation

Access Type

Open Access

Sponsorship

Description