Double Hopf bifurcation and chaotic dynamics in a periodically-forced SIR model

dc.contributor.authorCarvalho, João Maurício
dc.date.accessioned2026-01-05T14:45:12Z
dc.date.available2026-01-05T14:45:12Z
dc.date.issued2025-12-24
dc.description.abstractWe perform a qualitative analysis of a periodically-forced SIR model which incorporates the disease transmission rate by direct contact with the natural viral source, in addition to the classic disease transmission rate between individuals. We direct this work towards two main topics: (i) in the absence of seasonality, the endemic equilibrium point (and unique) undergoes both supercritical and subcritical Hopf bifurcations. We identify a specific range of values for the disease transmission rate , for which the system exhibits an attracting periodic solution while the equilibrium is unstable; (ii) in the presence of seasonality, we prove via torus-breakdown theory that the system exhibits strange attractors (observable chaos). These findings reveal that small changes in parameters can generate complex epidemic dynamics, becoming very difficult to control. All findings are derived analytically and supported by numerical simulations.
dc.identifier.citationCarvalho, J. M. (2025). Double Hopf bifurcation and chaotic dynamics in a periodically-forced SIR model. Scientific Reports, 15, 44489, 1-13. https://doi.org/10.1038/s41598-025-28016-3. Repositório Institucional UPT. https://hdl.handle.net/11328/6864
dc.identifier.issn2045-2322
dc.identifier.urihttps://hdl.handle.net/11328/6864
dc.language.isoeng
dc.publisherNature Research
dc.relation.hasversionhttps://doi.org/10.1038/s41598-025-28016-3
dc.rightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectSIR model
dc.subjectHopf bifurcation
dc.subjectSeasonality
dc.subjectStrange attractors
dc.subjectTorus-breakdown
dc.subject.fosCiências Naturais - Ciências da Computação e da Informação
dc.titleDouble Hopf bifurcation and chaotic dynamics in a periodically-forced SIR model
dc.typejournal article
dcterms.referenceshttps://www.nature.com/articles/s41598-025-28016-3
dspace.entity.typePublication
oaire.citation.endPage13
oaire.citation.startPage1
oaire.citation.titleScientific Reports
oaire.citation.volume15
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.affiliation.nameREMIT – Research on Economics, Management and Information Technologies
person.familyNameCarvalho
person.givenNameJoão Maurício
person.identifier.ciencia-idD818-32ED-1DE4
person.identifier.orcidhttps://orcid.org/0000-0001-7709-1631
person.identifier.ridNWH-4741-2025
person.identifier.scopus-author-id57222719456
relation.isAuthorOfPublicationb891547e-bf6b-43c2-af21-345518092be9
relation.isAuthorOfPublication.latestForDiscoveryb891547e-bf6b-43c2-af21-345518092be9

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Double-Hopf (2025).pdf
Size:
4.5 MB
Format:
Adobe Portable Document Format