Demand-Responsive Transport for Urban Mobility: Integrating Mobile Data Analytics to Enhance Public Transportation Systems

dc.contributor.authorGomes, Rui Jorge Reis
dc.contributor.authorMelo, Sandra
dc.contributor.authorAbbasi, Reza
dc.contributor.authorArantes, Amílcar
dc.date.accessioned2025-07-11T15:36:14Z
dc.date.available2025-07-11T15:36:14Z
dc.date.issued2024-05-22
dc.description.abstractTransport-on-demand services, such as demand-responsive transport (DRT), involve a flexible transportation service that offers convenient and personalised mobility choices for public transport users. Integrating DRT with mobile data and data analytics enhances understanding of travel patterns and allows the development of improved algorithms to support design-optimised services. This study introduces a replicable framework for DRT that employs an on-demand transport simulator and routing algorithm. This framework is supported by a mobile data set, enabling a more accurate service design grounded on actual demand data. Decision-makers can use this framework to understand traffic patterns better and test a DRT solution before implementing it in the actual world. A case study was conducted in Porto, Portugal, to demonstrate its practicality and proof of concept. Results show that the DRT solution required 135% fewer stops and travelled 81% fewer kilometres than the existing fixed-line service. Findings highlight the potential of this data-driven framework for urban public transportation systems to improve key performance metrics in required buses, energy consumption, travelled distance, and stop frequency, all while maintaining the number of served passengers. Under specific circumstances, embracing this approach can offer a more efficient, user-centric, and environmentally sustainable urban transportation service
dc.identifier.citationMelo, S., Gomes, R., Abbasi, R., & Arantes, A. (2024). Demand-Responsive Transport for Urban Mobility: Integrating Mobile Data Analytics to Enhance Public Transportation Systems. Sustainability, 16(11), 4367, 1-18. https://doi.org/10.3390/su16114367. Repositório Institucional UPT. https://hdl.handle.net/11328/6455
dc.identifier.issn2071-1050
dc.identifier.urihttps://hdl.handle.net/11328/6455
dc.language.isoeng
dc.publisherMDPI - Multidisciplinary Digital Publishing Institute
dc.relationCivil Engineering Research and Innovation for Sustainability (UIDB/04625/2020)
dc.relation.hasversionhttps://doi.org/10.3390/su16114367
dc.rightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectdemand-responsive transportation
dc.subjecttransport-on-demand
dc.subjectdynamic routing
dc.subjectmobile data analysis
dc.subjectsimulation
dc.subjectdata-driven decision making
dc.subject.fosEngenharia e Tecnologia - Outras Engenharias e Tecnologias
dc.subject.ods11 - sustainable cities and communities
dc.titleDemand-Responsive Transport for Urban Mobility: Integrating Mobile Data Analytics to Enhance Public Transportation Systems
dc.typejournal article
dcterms.referenceshttps://www.mdpi.com/2071-1050/16/11/4367
dspace.entity.typePublication
oaire.awardTitleCivil Engineering Research and Innovation for Sustainability (UIDB/04625/2020)
oaire.awardURIhttps://sciproj.ptcris.pt/157591UID
oaire.citation.endPage18
oaire.citation.issue11
oaire.citation.startPage1
oaire.citation.titleSustainability
oaire.citation.volume16
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.affiliation.nameREMIT – Research on Economics, Management and Information Technologies
person.familyNameGomes
person.givenNameRui Jorge Reis
person.identifier.ciencia-idBD1D-F316-C1AA
person.identifier.gsidhttps://scholar.google.pt/citations?user=SAHc0xsAAAAJ&hl=pt-PT
person.identifier.orcid0000-0001-7233-0736
person.identifier.ridN-7429-2018
person.identifier.scopus-author-id55938890400
relation.isAuthorOfPublication0f0e295b-09de-4caa-9534-42d59e6b94a2
relation.isAuthorOfPublication.latestForDiscovery0f0e295b-09de-4caa-9534-42d59e6b94a2
relation.isProjectOfPublication4d5c2131-fe1f-48f2-b965-f13fc9a916ab
relation.isProjectOfPublication.latestForDiscovery4d5c2131-fe1f-48f2-b965-f13fc9a916ab

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sustainability-16-04367.pdf
Size:
4.27 MB
Format:
Adobe Portable Document Format