Pre-Smoothing methods for transition probabilities in Complex Non-Markovian Multi-State Models

dc.contributor.authorSoutinho, Gustavo
dc.contributor.authorMeira-Machado, Luís
dc.date.accessioned2025-07-16T09:39:55Z
dc.date.available2025-07-16T09:39:55Z
dc.date.issued2025-07-01
dc.description.abstractMulti-state models are essential tools in longitudinal data analysis, enabling the estimation of transition probabilities that provide predictive insights into clinical outcomes across stages of disease progression or recovery. Conventional approaches to inference in these models often rely on the Markov assumption, which simplifies computation but may not hold in complex real-world settings. To address this limitation, we extend the landmark Aalen-Johansen estimator by incorporating presmoothing techniques, offering a robust alternative for estimating transition probabilities in non-Markovian multi-state models, including those with multiple states and reversible transitions. The proposed method effectively reduces estimation variability and mitigates biases arising from the selection of arbitrary landmark times. Through empirical evaluation using three real-world datasets with distinct multi-state structures, we demonstrate that the presmoothed estimator achieves enhanced precision and stability, particularly in the presence of high noise or small sample sizes. To facilitate its application, we provide an R package, presmoothedTP, which implements all the proposed methods.
dc.identifier.citationSoutinho, G., & Meira-Machado, L. (versão aceite: 1 de julho de 2025). Pre-Smoothing methods for transition probabilities in Complex Non-Markovian Multi-State Models. International Statistical Review, 1-20. https://doi.org/10.1111/insr.70002. Repositório Institucional UPT. https://hdl.handle.net/11328/6474
dc.identifier.issn0306-7734
dc.identifier.issn1751-5823
dc.identifier.urihttps://hdl.handle.net/11328/6474
dc.language.isoeng
dc.publisherWiley
dc.relation.hasversionhttps://doi.org/10.1111/insr.70002
dc.rightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectmulti-state models
dc.subjecttransition probabilities
dc.subjectpresmoothing
dc.subjectlandmarking
dc.subjectnon-Markovian processes
dc.subject.fosCiências Naturais - Matemáticas
dc.titlePre-Smoothing methods for transition probabilities in Complex Non-Markovian Multi-State Models
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage20
oaire.citation.startPage1
oaire.citation.titleInternational Statistical Review
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
person.affiliation.nameDCT - Departamento de Ciência e Tecnologia
person.familyNameSoutinho
person.givenNameGustavo
person.identifier.ciencia-id0918-604C-2C04
person.identifier.orcid0000-0002-0559-1327
person.identifier.ridGSE-1063-2022
person.identifier.scopus-author-id57195326662
relation.isAuthorOfPublication6b00013b-9493-4621-b710-79beb48b65a4
relation.isAuthorOfPublication.latestForDiscovery6b00013b-9493-4621-b710-79beb48b65a4

Files

Original bundle

Now showing 1 - 3 of 3
Name:
UPT Webmail __ Your license was successfully submitted.pdf
Size:
217.63 KB
Format:
Adobe Portable Document Format
Name:
Author Services-in process.pdf
Size:
276.13 KB
Format:
Adobe Portable Document Format
Name:
Soutinho_Machado_Revised_International_Statistics_Review-postprint.pdf
Size:
845.33 KB
Format:
Adobe Portable Document Format