An intelligent community-based system for healthcare prioritisation

dc.contributor.authorPinho, Micaela
dc.contributor.authorLeal, Fátima
dc.date.accessioned2025-10-01T15:56:10Z
dc.date.available2025-10-01T15:56:10Z
dc.date.issued2025-09-30
dc.description.abstractHealthcare rationing is unavoidable in systems constrained by limited resources. While decisions about who should be treated are ethically complex, they must reflect not only efficiency concerns but also socially accepted values. This study aims to develop a multi-criteria decision-support system - Vital Priority System, that prioritise patients using a Random Forest algorithm trained on multiple rationing criteria endorsed by Portuguese civil society. Based on a Portuguese online survey data, the model incorporates nine dimensions: clinical need, life expectancy gain, quality of life improvement, age, waiting time, parental status, lifestyle responsibility, and social role. Our results show that clinical need, expected treatment effectiveness, waiting time and age were the most influential, followed by parental status. Lifestyle and social role factors were least weighted. The proposed system enables the classification of patients as ‘priority’ or ‘non-priority’, providing healthcare professionals with a transparent, consistent, and ethically grounded tool to support decision-making. This study advances the literature by operationalising, for the first time in the Portuguese context, public preferences in a replicable AI-based framework for fairer patient prioritisation.
dc.identifier.citationPinho, M., & Leal, F. (2025). An intelligent community-based system for healthcare prioritisation. Scientific Reports, 15, (published online: 30 September 2025), 34066, 1-10. https://doi.org/10.1038/s41598-025-14363-8. Repositório Institucional UPT. https://hdl.handle.net/11328/6676
dc.identifier.issn2045-2322
dc.identifier.urihttps://hdl.handle.net/11328/6676
dc.language.isoeng
dc.publisherNature Research
dc.relation.hasversionhttps://doi.org/10.1038/s41598-025-14363-8
dc.rightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectPatient prioritisation
dc.subjectExplicit rationing
dc.subjectArtificial intelligence
dc.subjectMachine learning
dc.subjectMulti-criteria decision-support system
dc.subjectVital priority system
dc.subject.fosCiências Sociais - Economia e Gestão
dc.titleAn intelligent community-based system for healthcare prioritisation
dc.typejournal article
dcterms.referenceshttps://www.nature.com/articles/s41598-025-14363-8#citeas
dspace.entity.typePublication
oaire.citation.endPage10
oaire.citation.startPage1
oaire.citation.titleScientific Reports
oaire.citation.volume15
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.affiliation.nameREMIT – Research on Economics, Management and Information Technologies
person.affiliation.nameREMIT – Research on Economics, Management and Information Technologies
person.familyNamePinho
person.familyNameLeal
person.givenNameMicaela
person.givenNameFátima
person.identifier.ciencia-idAF14-3E2F-3400
person.identifier.ciencia-id2211-3EC7-B4B6
person.identifier.orcid0000-0003-2021-9141
person.identifier.orcid0000-0003-4418-2590
person.identifier.ridL-1789-2018
person.identifier.ridY-3460-2019
person.identifier.scopus-author-id23990998900
person.identifier.scopus-author-id57190765181
relation.isAuthorOfPublicationb73425ae-9c53-43ec-9bef-8d0ebebecc6b
relation.isAuthorOfPublication8066078f-1e30-4b0a-aa84-3b6a2af4185c
relation.isAuthorOfPublication.latestForDiscoveryb73425ae-9c53-43ec-9bef-8d0ebebecc6b

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41598-025-14363-8.pdf
Size:
1.32 MB
Format:
Adobe Portable Document Format