Leite, Jorge
A carregar...
Endereço de Email
Data de nascimento
Cargo
Último Nome
Leite
Primeiro Nome
Jorge
Nome
Jorge Leite
Biografia
Jorge Leite obtained his PhD in 2011 from the University of Minho, where he also completed his Psychology Degree in 2005. From 2013 to 2016, he underwent postdoctoral training at the Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. Currently, he holds the positions of Vice-Rector for Research, Associate Professor, and Coordinator of the CINTESIS.UPT. Throughout his career, he has made significant contributions to the field, with over 70 peer-reviewed publications, including articles in journals, book chapters, and conference proceedings. According to Scopus data, over half of his publications are featured in the top 25% of journals, while 45% are among the top 25% most cited documents globally. He has also supervised numerous MSc dissertations and is currently overseeing four PhD theses. Furthermore, he actively participates in various research projects, taking on roles such as Principal Investigator, Researcher, and Supervisor. These projects have successfully secured over 6M euros in funding. His dedication to his work has been recognized with seven awards and/or honors. Furthermore, he has collaborated with 167 fellow researchers in various scientific endeavors.
Projetos de investigação
Unidades organizacionais
CINTESIS.UPT - Centro de Investigação em Tecnologias e Serviços de Saúde
Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS.UPT), former I2P, is an R&D unit devoted to the study of cognition and behaviour in context. With an interdisciplinary focus, namely on Education, Translational and Applied Psychology
6 resultados
Resultados da pesquisa
A mostrar 1 - 6 de 6
Publicação Acesso Restrito Modulation of the cognitive event-related potential P3 by transcranial direct current stimulation: Systematic review and meta-analysis2022-01 - Mendes, Augusto J.; Pacheco-Barrios, Kevin; Lema, Alberto; Gonçalves, Óscar F.; Fregni, Felipe; Carvalho, Sandra; Leite, JorgeTranscranial direct current stimulation (tDCS) has been widely used to modulate cognition and behavior. However, only a few studies have been probing the brain mechanism underlying the effects of tDCS on cognitive processing, especially throughout electrophysiological markers, such as the P3. This meta-analysis assessed the effects of tDCS in P3 amplitude and latency during an oddball, n-back, and Go/No-Go tasks, as well as during emotional processing. A total of 36 studies were identified, but only 23 were included in the quantitative analysis. The results show that the parietal P3 amplitude increased during oddball and n-back tasks, mostly after anodal stimulation over the left dorsolateral prefrontal cortex (p = 0.018, SMD = 0.4) and right inferior frontal gyrus (p < 0.001, SMD = 0.669) respectively. These findings suggest the potential usefulness of the parietal P3 ERP as a marker of tDCS-induced effects during task performance. Nonetheless, this study had a low number of studies and the presence of considerable risk of bias, highlighting issues to be addressed in the future.Publicação Acesso Aberto Tailoring transcranial alternating current stimulation based on endogenous event-related P3 to modulate premature responses: A feasibility study2024-04-03 - Mendes, Augusto; Lema, Alberto; Carvalho, Sandra; Leite, JorgeBackground Transcranial alternating current stimulation (tACS) is a brain stimulation method for modulating ongoing endogenous oscillatory activity at specified frequency during sensory and cognitive processes. Given the overlap between event-related potentials (ERPs) and event-related oscillations (EROs), ERPs can be studied as putative biomarkers of the effects of tACS in the brain during cognitive/sensory task performance. Objective This preliminary study aimed to test the feasibility of individually tailored tACS based on individual P3 (latency and frequency) elicited during a cued premature response task. Thus, tACS frequency was individually tailored to match target-P3 ERO for each participant. Likewise, the target onset in the task was adjusted to match the tACS phase and target-P3 latency. Methods Twelve healthy volunteers underwent tACS in two separate sessions while performing a premature response task. Target-P3 latency and ERO were calculated in a baseline block during the first session to allow a posterior synchronization between the tACS and the endogenous oscillatory activity. The cue and target-P3 amplitudes, delta/theta ERO, and power spectral density (PSD) were evaluated pre and post-tACS blocks. Results Target-P3 amplitude significantly increased after activetACS, when compared to sham. Evoked-delta during cue-P3 was decreased after tACS. No effects were found for delta ERO during target-P3 nor for the PSD and behavioral outcomes. Conclusion The present findings highlight the possible effect of phase synchronization between individualized tACS parameters and endogenous oscillatory activity, which may result in an enhancement of the underlying process (i.e., an increase of target-P3). However, an unsuccessful synchronization between tACS and EEG activity might also result in a decrease in the evoked-delta activity during cue-P3. Further studies are needed to optimize the parameters of endogenous activity and tACS synchronization. The implications of the current results for future studies, including clinical studies, are further discussed since transcranial alternating current stimulation can be individually tailored based on endogenous event-related P3 to modulate responses.Publicação Acesso Aberto Transcranial direct current stimulation decreases P3 amplitude and inherent Delta activity during a waiting impulsivity paradigm: Crossover study2024-02-07 - Mendes, Augusto J.; Galdo-Álvarez, Santiago; Lema, Alberto; Carvalho, Sandra; Leite, JorgeThe inability to wait for a target before initiating an action (i.e., waiting impulsivity) is one of the main features of addictive behaviors. Current interventions for addiction, such as transcranial Direct Current Stimulation (tDCS), have been suggested to improve this inability. Nonetheless, the effects of tDCS on waiting impulsivity and underlying electrophysiological (EEG) markers are still not clear. Therefore, this study aimed to evaluate the effects of neuromodulation over the right inferior frontal gyrus (rIFG) on the behavior and EEG markers of reward anticipation (i.e., cue and target-P3 and underlying delta/theta power) during a premature responding task. For that, forty healthy subjects participated in two experimental sessions, where they received active and sham tDCS over the rIFG combined with EEG recording during the task. To evaluate transfer effects, participants also performed two control tasks to assess delay discounting and motor inhibition. The active tDCS decreased the cue-P3 and target-P3 amplitudes, as well as delta power during target-P3. While no tDCS effects were found for motor inhibition, active tDCS increased the discounting of future rewards when compared to sham. These findings suggest a tDCS-induced modulation of the P3 component and underlying oscillatory activity during waiting impulsivity and the discounting of future rewards.Publicação Acesso Restrito Mind wandering: Tracking perceptual decoupling, mental improvisation, and mental navigation2020-10-15 - Gonçalves, Óscar F.; Silva, Mariana Rachel Dias da; Carvalho, Sandra; Coelho, Patrícia; Lema, Alberto; Mendes, Augusto J.; Branco, Diogo; Collus, Jorge; Boggio, Paulo S.; Leite, JorgeBackground: Mind wandering is a prevalent phenomenon. However, the concept of mind wandering is associated with distinct and often orthogonal concepts, and research- ers are still debating the best strategies to gain access to mind-wandering processes. Nonetheless, there is a progressive acknowledgment that mind wandering is a multi- dimensional and heterogeneous construct. We argue that to fully understand mind wandering, we need to look at dimensions assessing the process (i.e., perceptual decoupling), dynamics (i.e., mental improvisation), and content (i.e., mental naviga- tion). Objective: The objective of this study was to develop a self-report measure of mind wandering—the Mind Wandering Inventory (MWI)—to capture the heterogene- ity of mind wandering in terms of process, dynamic, and content components. Method: Five language versions of the MWI were administered to an international sample of 1,162 individuals. Results: Results showed that the MWI had good levels of internal consistency. In terms of internal structure, we found a first factor to index perceptual decoupling, a second to index mental improvisation, and a third to index mental navigation. Additionally, a study of concurrent validity with Spontaneous and Delib- erate Mind Wandering scales suggested that MWI has significant correlations with previous mind-wandering scales and that factors 1 (perceptual decoupling) and 2 (mental improvisation) seemed to be more closely associated with spontaneous than deliberate mind wandering. Finally, individuals coming from sciences major back- ground reported increased levels of mind wandering when compared with participants from both health, social and human sciences background.Publicação Acesso Aberto The effects of direct current stimulation and random noise stimulation on attention networks2021-03-18 - Lema, Alberto; Carvalho, Sandra; Fregni, Felipe; Gonçalves, Óscar F.; Leite, JorgeAttention is a complex cognitive process that selects specific stimuli for further processing. Previous research suggested the existence of three attentional networks: alerting, orienting and executive. However, one important topic is how to enhance the efficiency of attentional networks. In this context, understanding how this system behaves under two different modulatory conditions, namely transcranial direct current stimulation (tDCS) and transcranial Random Noise Stimulation (tRNS), will provide important insights towards the understanding of the attention network system. Twenty-seven healthy students took part on a randomized single-blinded crossover study, testing the effects that involved three modalities of unilateral stimulation (tRNS, anodal tDCS, and sham) over the DLPFC, during the performance of the attention network test (ANT) in three different conditions: standard, speed and accuracy. Results showed that tRNS was able to increase attention during more complex situations, namely by increasing alerting and decreasing conflict effect in the executive network. Under the Speed condition, tRNS increased efficiency of the alerting network, as well as under the more demanding conflict network, tRNS overall increased the performance when comparing to sham. No statistical significant effects of tDCS were observed. These results are compatible with the attention requiring the synchronization of pre-existing networks, rather the reinforcement or creation of new pathways.Publicação Acesso Restrito Functional neuroimaging and behavioral correlates of multisite tDCS as an add-on to language training in a person with post-stroke non-fluent aphasia: A year-long case study2024-05-03 - Mendes, Augusto; Lema, Alberto; Soares, José Miguel; Sampaio, Adriana; Carvalho, Sandra; Leite, JorgeMary, who experienced non-fluent aphasia as a result of an ischemic stroke, received 10 years of personalized language training (LT), resulting in transient enhancements in speech and comprehension. To enhance these effects, multisite transcranial Direct Current Stimulation (tDCS) was added to her LT regimen for 15 sessions. Assessment using the Reliable Change Index showed that this combination improved her left inferior frontal connectivity and speech production for two months and significantly improved comprehension after one month. The results indicate that using multisite transcranial direct current stimulation (tDCS) can improve the effectiveness of language therapy (LT) for individuals with non-fluent aphasia.