Leite, Jorge

A carregar...
Foto do perfil

Endereço de Email

Data de nascimento

Cargo

Último Nome

Leite

Primeiro Nome

Jorge

Nome

Jorge Leite

Biografia

Jorge Leite obtained his PhD in 2011 from the University of Minho, where he also completed his Psychology Degree in 2005. From 2013 to 2016, he underwent postdoctoral training at the Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. Currently, he holds the positions of Vice-Rector for Research, Associate Professor, and Coordinator of the CINTESIS.UPT. Throughout his career, he has made significant contributions to the field, with over 70 peer-reviewed publications, including articles in journals, book chapters, and conference proceedings. According to Scopus data, over half of his publications are featured in the top 25% of journals, while 45% are among the top 25% most cited documents globally. He has also supervised numerous MSc dissertations and is currently overseeing four PhD theses. Furthermore, he actively participates in various research projects, taking on roles such as Principal Investigator, Researcher, and Supervisor. These projects have successfully secured over 6M euros in funding. His dedication to his work has been recognized with seven awards and/or honors. Furthermore, he has collaborated with 167 fellow researchers in various scientific endeavors.

Projetos de investigação

Unidades organizacionais

Organização
CINTESIS.UPT - Centro de Investigação em Tecnologias e Serviços de Saúde
Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS.UPT), former I2P, is an R&D unit devoted to the study of cognition and behaviour in context. With an interdisciplinary focus, namely on Education, Translational and Applied Psychology

Resultados da pesquisa

A mostrar 1 - 10 de 20
  • PublicaçãoAcesso Aberto
    The acute impact of the early stages of COVID-19 pandemic in people with pre-existing psychiatric disorders: A systematic review
    2022-04-23 - Carvalho, Sandra; Coelho, Catarina G.; Kluwe-Schiavon, Bruno; Magalhães, Juliana; Leite, Jorge
    People with pre-pandemic health conditions are more vulnerable and more likely to suffer greater psychosocial impact due to the current COVID-19 pandemic and the lockdown measures. Thus, the objective of this work was to systematically review the impact of the early stages COVID-19 pandemic on people with pre-existing psychiatric disorders. The search was performed between 23 January and 2 September 2021 in PubMed, PsycINFO, and EMBASE. A total of 4167 published results were identified; however, only 49 were included in this review. Results show that there was considerable heterogeneity among studies, which resulted in a low consensus. However, it seems that the impact of the first stage of the COVID-19 pandemic on psychiatric disorders was two-fold: (1) an overall effect, in which people suffering from psychiatric disorders in general experienced more psychological distress and anxiety when compared to people who had no psychiatric diagnosis, and (2) a condition-specific effect, namely in people suffering from eating disorders and obsessive compulsive disorders. Moreover, the current work highlights that there were also some external factors that were related to worsening symptoms. For instance, unemployment or experiencing work and financial difficulties can be a trigger for greater distress during the pandemic for people with mood disorders, and being alone and in social isolation during the COVID-19 pandemic may actually increase substance use and relapse rates. Further studies are needed to prospectively investigate the long-term effects of the current COVID-19 pandemic on people with (pre)-existing psychiatric conditions and on the onset or deterioration of psychiatric-related symptoms in a larger number of participants, as well as exploring the long-term effects of the current pandemic on mental health.
  • PublicaçãoAcesso Aberto
    Digitalized transcranial electrical stimulation: a consensus statement
    2022-09-05 - Brunoni, André R.; Ekhtiari, Hamed; Antal, Andrea; Auvichayapat, Paradee; Baeken, Chris; Benseñor, Isabela M; Bikson, Marom; Boggio, Paulo; Borroni, Barbara; Brighina, Filippo; Brunelin, Erome; Carvalho, Sandra; Caumo, Wolnei; Ciechanski, Patrick; Charvet, Leigh; Clark, Vincent P; Kadosh, Roi Cohen; Cotelli, Maria; Datta, Abhishek; Deng, Zhi-De; Raedt, Rudi De; Ridder, Dirk De; Fitzgerald, Paul B; Floel, Agnes; Frohlich, Flavio; George, Mark S; Ghobadi-Azbari, Peyman; Goerigk, Stephan; Hamilton, Roy H; Jaberzadeh, Shapour J; Hoy, Kate; Kidgell, Dawson J; Zonoozi, Arash Khojasteh; Kirton, Adam; Laureys, Steven; Lavidor, Michal; Lee, Kiwon; Lisanby, Sarah H; Loo, Colleen; Martin, Donel M; Miniussi, Carlo; Mondino, Marine; Monte-Silva, Katia; Morales-Quezada, Leon; Nitsche, Michael A; Okano, Alexandre H; Oliveira, Claudia S; Onarheim, Balder; Pacheco-Barrios, Kevin; Padberg, Frank; Nakamura-Palacios, Ester M; Palm, Ulrich; Paulus, Walter; Plewnia, Christian; Priori, Alberto; Rajji, Tarek K; Razza, Lais B; Rehn, Erik M; Ruffini, Giuliov; Schellhorn, Klaus; Zare-Bidoky, Mehran; Simis, Marcel; Skorupinski, Pawel; Suen, Paulo; Thibaut, Aurore; Valiengo, Leandro C L; Vanderhasselt, Marie-Anne; Vanneste, Sven; Venkatasubramanian, Ganesan; Violante, Ines R; Wexler, Anna; Woods, Adam J; Fregni, Felipe; Leite, Jorge
    Objective: Although relatively costly and non-scalable, non-invasive neuromodulation interventions are treatment alternatives for neuropsychiatric disorders. The recent developments of highly-deployable transcranial electric stimulation (tES) systems, combined with mobile-Health technologies, could be incorporated in digital trials to overcome methodological barriers and increase equity of access. The study aims are to discuss the implementation of tES digital trials by performing a systematic scoping review and strategic process mapping, evaluate methodological aspects of tES digital trial designs, and provide Delphi-based recommendations for implementing digital trials using tES. Methods: We convened 61 highly-productive specialists and contacted 8 tES companies to assess 71 issues related to tES digitalization readiness, and processes, barriers, advantages, and opportunities for implementing tES digital trials. Delphi-based recommendations (>60% agreement) were provided. Results: The main strengths/opportunities of tES were: (i) non-pharmacological nature (92% of agreement), safety of these techniques (80%), affordability (88%), and potential scalability (78%). As for weaknesses/ threats, we listed insufficient supervision (76%) and unclear regulatory status (69%). Many issues related to methodological biases did not reach consensus. Device appraisal showed moderate digitalization readiness, with high safety and potential for trial implementation, but low connectivity. Conclusions: Panelists recognized the potential of tES for scalability, generalizability, and leverage of digital trials processes; with no consensus about aspects regarding methodological biases. Significance: We further propose and discuss a conceptual framework for exploiting shared aspects between mobile-Health tES technologies with digital trials methodology to drive future efforts for digitizing tES trials.
  • PublicaçãoAcesso Restrito
    Modulation of the cognitive event-related potential P3 by transcranial direct current stimulation: Systematic review and meta-analysis
    2022-01 - Mendes, Augusto J.; Pacheco-Barrios, Kevin; Lema, Alberto; Gonçalves, Óscar F.; Fregni, Felipe; Carvalho, Sandra; Leite, Jorge
    Transcranial direct current stimulation (tDCS) has been widely used to modulate cognition and behavior. However, only a few studies have been probing the brain mechanism underlying the effects of tDCS on cognitive processing, especially throughout electrophysiological markers, such as the P3. This meta-analysis assessed the effects of tDCS in P3 amplitude and latency during an oddball, n-back, and Go/No-Go tasks, as well as during emotional processing. A total of 36 studies were identified, but only 23 were included in the quantitative analysis. The results show that the parietal P3 amplitude increased during oddball and n-back tasks, mostly after anodal stimulation over the left dorsolateral prefrontal cortex (p = 0.018, SMD = 0.4) and right inferior frontal gyrus (p < 0.001, SMD = 0.669) respectively. These findings suggest the potential usefulness of the parietal P3 ERP as a marker of tDCS-induced effects during task performance. Nonetheless, this study had a low number of studies and the presence of considerable risk of bias, highlighting issues to be addressed in the future.
  • PublicaçãoAcesso Aberto
    Transcranial direct current stimulation decreases P3 amplitude and inherent Delta activity during a waiting impulsivity paradigm: Crossover study
    2024-02-07 - Mendes, Augusto J.; Galdo-Álvarez, Santiago; Lema, Alberto; Carvalho, Sandra; Leite, Jorge
    The inability to wait for a target before initiating an action (i.e., waiting impulsivity) is one of the main features of addictive behaviors. Current interventions for addiction, such as transcranial Direct Current Stimulation (tDCS), have been suggested to improve this inability. Nonetheless, the effects of tDCS on waiting impulsivity and underlying electrophysiological (EEG) markers are still not clear. Therefore, this study aimed to evaluate the effects of neuromodulation over the right inferior frontal gyrus (rIFG) on the behavior and EEG markers of reward anticipation (i.e., cue and target-P3 and underlying delta/theta power) during a premature responding task. For that, forty healthy subjects participated in two experimental sessions, where they received active and sham tDCS over the rIFG combined with EEG recording during the task. To evaluate transfer effects, participants also performed two control tasks to assess delay discounting and motor inhibition. The active tDCS decreased the cue-P3 and target-P3 amplitudes, as well as delta power during target-P3. While no tDCS effects were found for motor inhibition, active tDCS increased the discounting of future rewards when compared to sham. These findings suggest a tDCS-induced modulation of the P3 component and underlying oscillatory activity during waiting impulsivity and the discounting of future rewards.
  • PublicaçãoAcesso Aberto
    Editorial: Optimization strategies for pain management with neuromodulation
    2022-09-15 - Pacheco-Barrios, Kevin; Carvalho, Sandra; Caumo, Wolnei; Fregni, Felipe; Leite, Jorge
    Chronic pain is a high-priority global health issue due to its high prevalence, impact on quality of life, and cost (1). In most cases, chronic pain is challenging to manage, and the existing treatment modalities have reported frequent and severe adverse events, including gastritis (2), cardiovascular complications [...]
  • PublicaçãoAcesso Aberto
    Tailoring transcranial alternating current stimulation based on endogenous event-related P3 to modulate premature responses: A feasibility study
    2024-04-03 - Mendes, Augusto; Lema, Alberto; Carvalho, Sandra; Leite, Jorge
    Background Transcranial alternating current stimulation (tACS) is a brain stimulation method for modulating ongoing endogenous oscillatory activity at specified frequency during sensory and cognitive processes. Given the overlap between event-related potentials (ERPs) and event-related oscillations (EROs), ERPs can be studied as putative biomarkers of the effects of tACS in the brain during cognitive/sensory task performance. Objective This preliminary study aimed to test the feasibility of individually tailored tACS based on individual P3 (latency and frequency) elicited during a cued premature response task. Thus, tACS frequency was individually tailored to match target-P3 ERO for each participant. Likewise, the target onset in the task was adjusted to match the tACS phase and target-P3 latency. Methods Twelve healthy volunteers underwent tACS in two separate sessions while performing a premature response task. Target-P3 latency and ERO were calculated in a baseline block during the first session to allow a posterior synchronization between the tACS and the endogenous oscillatory activity. The cue and target-P3 amplitudes, delta/theta ERO, and power spectral density (PSD) were evaluated pre and post-tACS blocks. Results Target-P3 amplitude significantly increased after activetACS, when compared to sham. Evoked-delta during cue-P3 was decreased after tACS. No effects were found for delta ERO during target-P3 nor for the PSD and behavioral outcomes. Conclusion The present findings highlight the possible effect of phase synchronization between individualized tACS parameters and endogenous oscillatory activity, which may result in an enhancement of the underlying process (i.e., an increase of target-P3). However, an unsuccessful synchronization between tACS and EEG activity might also result in a decrease in the evoked-delta activity during cue-P3. Further studies are needed to optimize the parameters of endogenous activity and tACS synchronization. The implications of the current results for future studies, including clinical studies, are further discussed since transcranial alternating current stimulation can be individually tailored based on endogenous event-related P3 to modulate responses.
  • PublicaçãoAcesso Aberto
    Polarity specific effects of cross-hemispheric tDCS coupled with approach-avoidance training on chocolate craving
    2019-01-24 - Carvalho, Sandra; Sampaio, Adriana; Mendes, Augusto José; Lema, Alberto; Vieira, Daniela; Leite, Jorge; Gonçalves, Óscar F.
  • PublicaçãoAcesso Aberto
    Longitudinal Clinical Trial Recruitment and Retention Challenges in the Burn Population: Lessons Learned from a Trial Examining a Novel Intervention for Chronic Neuropathic Symptoms
    2019 - Ohrtman, Emily A.; Zaninotto, Ana Luiza; Carvalho, Sandra; Shie, Vivian L.; Ianni, Corinne Rose; Kazis, Lewis E.; Ross Zafonte, Ross Zafonte; Ryan, Colleen M.; Schneider, Jeffrey C.; Fregni, Felipe; Leite, Jorge
    Long-term trials are key to understanding chronic symptoms such as pain and itch. However, challenges such as high attrition rates and poor recruitment are common when conducting research. The aim of this work was to explore these issues within a long-term randomized control trial using transcranial direct current stimulation to treat pain and itch. This parallel double blinded, placebo-controlled randomized trial was comprised of 15 transcranial direct current stimulation visits and 7 follow-up visits. Participants were over the age of 18, had a burn injury that occurred at least 3 weeks before enrollment, and reported having pain and/or itch that was moderate to severe in intensity. A total of 31 subjects were randomized into either an active or sham transcranial direct current stimulation groups. There were no significant differences between the groups in terms of age, race, education, baseline depression, or anxiety. The median dropout time was at visit 19 (visit 16 [SE = 1.98] for the sham group and visit 19 [SE = 1.98] for the active group). Analysis showed no differences in the dropout rate between groups [χ2(1) = 0.003, P = .954]. The dropout rate was 46.7% for the sham group and 43.8% for the active group. Overall, 45.2% of the subjects dropped out of the trial. Long-term clinical trials are an essential part of evaluating interventions for symptoms such as chronic pain and itch. However, as seen in this trial, long-term studies in the burn population often face recruitment and adherence challenges.
  • PublicaçãoAcesso Aberto
    Speed of Processing (SoP) Training Plus α-tACS in people with mild cognitive impairment: a double blind, parallel, placebo controlled trial study protocol
    2022-07-14 - Gonçalves, Óscar F.; Carvalho, Sandra; Leite, Jorge
    Several cognitive training programs, alone or in combination with non-invasive brain stimulation have been tested in order to ameliorate age-related cognitive impairments, such as the ones found in Mild Cognitive Impairment (MCI). However, the effects of Cognitive Training (CT)—combined or not—with several forms of non-invasive brain stimulation have been modest at most. We aim to assess if Speed of Processing (SoP) training combined with alpha transcranial alternating current stimulation (a-tACS) is able to increase speed of processing as assessed by the Useful Field of View (UFOV), when comparing to SoP training or active a-tACS alone. Moreover, we want to assess if those changes in speed of processing transfer to other cognitive domains, such as memory, language and executive functioning by using the NIH EXAMINER. We also want to test the mechanisms underlying these interventions, namely brain connectivity and coherence as assessed by electroencephalography (EEG). To that purpose, our proposal is to enroll 327 elders diagnosed with MCI in a double-blinded, parallel randomized clinical trial assessing the effects of combining SoP with alpha endogenous tACS (either active or sham) in people with MCI. Participants will perform an intervention that will last for 15 sessions. For the first 3 weeks, participants will receive nine sessions of the intervention, and then will receive two sessions per week (i.e., booster) for the following 3 weeks. They will then be assessed at 1, 3, and 6 months after the intervention has ended. This will allow us to detect the immediate, and long-term effects of the interventions, as well as to probe the mechanisms underlying its effects.
  • PublicaçãoAcesso Restrito
    Evidence-based guidelines and secondary meta-analysis for the use of transcranial direct current stimulation (tDCS) in neurological and psychiatric disorders
    2021-04 - Fregni, Felipe; El-Hagrassy, Mirret M.; Pacheco-Barrios, Kevin; Carvalho, Sandra; Simis, Marcel; Brunelin, Jerome; Nakamura-Palacios, Ester Miyuki; Marangolo, Paola; Venkatasubramanian, Ganesan; San-Juan, Daniel; Caumo, Wolnei; Bikson, Marom; Brunoni, André R.; Leite, Jorge
    Transcranial direct current stimulation (tDCS) has shown promising clinical results, leading to increased demand for an evidence-based review on its clinical effects. Objective We convened a team of tDCS experts to conduct a systematic review of clinical trials with more than one session of stimulation testing: Pain, Parkinson’s Disease Motor Function and Cognition, Stroke Motor Function and Language, Epilepsy, Major Depressive Disorder, Obsessive-Compulsive Disorder, Tourette Syndrome, Schizophrenia and Drug Addiction. Methods Experts were asked to conduct this systematic review according to the search methodology from PRISMA guidelines. Recommendations on efficacy were categorized into: Levels A (definitely effective), B (probably effective), C (possibly effective) or no recommendation. We assessed risk of bias for all included studies to confirm whether results were driven by potentially biased studies. Results Although most of the clinical trials have been designed as proof-of-concept trials, some of the indications analyzed in this review can be considered as definitely effective (Level A) such as depression, probably effective (Level B) such as neuropathic pain, fibromyalgia, migraine, post-operative patient-controlled analgesia and pain, Parkinson´s disease (motor and cognition), stroke (motor), epilepsy, schizophrenia and alcohol addiction. Assessment of bias showed that most of the studies had low risk of biases and sensitivity analysis for bias did not change these results. Effect sizes vary from 0.01 to 0.70 and were significant in about 8 conditions, with largest effect size being in postoperative acute pain, and smaller in stroke motor recovery (nonsignificant when combined with robotic therapy). Conclusion All recommendations listed here are based on current published Pubmed-indexed data. Despite high level of evidence in some conditions, it needs to be underscored that effect sizes and duration of effects are often limited; thus, real clinical impact needs to be further determined with different study designs.